Spaces:
Sleeping
Sleeping
File size: 13,985 Bytes
95ba5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
import os
import numpy as np
import pandas as pd
import pickle
import torch
from rdkit import Chem
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from src import const
from pdb import set_trace
def read_sdf(sdf_path):
with Chem.SDMolSupplier(sdf_path, sanitize=False) as supplier:
for molecule in supplier:
yield molecule
def get_one_hot(atom, atoms_dict):
one_hot = np.zeros(len(atoms_dict))
one_hot[atoms_dict[atom]] = 1
return one_hot
def parse_molecule(mol, is_geom):
one_hot = []
charges = []
atom2idx = const.GEOM_ATOM2IDX if is_geom else const.ATOM2IDX
charges_dict = const.GEOM_CHARGES if is_geom else const.CHARGES
for atom in mol.GetAtoms():
one_hot.append(get_one_hot(atom.GetSymbol(), atom2idx))
charges.append(charges_dict[atom.GetSymbol()])
positions = mol.GetConformer().GetPositions()
return positions, np.array(one_hot), np.array(charges)
class ZincDataset(Dataset):
def __init__(self, data_path, prefix, device):
dataset_path = os.path.join(data_path, f'{prefix}.pt')
if os.path.exists(dataset_path):
self.data = torch.load(dataset_path, map_location=device)
else:
print(f'Preprocessing dataset with prefix {prefix}')
self.data = ZincDataset.preprocess(data_path, prefix, device)
torch.save(self.data, dataset_path)
def __len__(self):
return len(self.data)
def __getitem__(self, item):
return self.data[item]
@staticmethod
def preprocess(data_path, prefix, device):
data = []
table_path = os.path.join(data_path, f'{prefix}_table.csv')
fragments_path = os.path.join(data_path, f'{prefix}_frag.sdf')
linkers_path = os.path.join(data_path, f'{prefix}_link.sdf')
is_geom = ('geom' in prefix) or ('MOAD' in prefix)
is_multifrag = 'multifrag' in prefix
table = pd.read_csv(table_path)
generator = tqdm(zip(table.iterrows(), read_sdf(fragments_path), read_sdf(linkers_path)), total=len(table))
for (_, row), fragments, linker in generator:
uuid = row['uuid']
name = row['molecule']
frag_pos, frag_one_hot, frag_charges = parse_molecule(fragments, is_geom=is_geom)
link_pos, link_one_hot, link_charges = parse_molecule(linker, is_geom=is_geom)
positions = np.concatenate([frag_pos, link_pos], axis=0)
one_hot = np.concatenate([frag_one_hot, link_one_hot], axis=0)
charges = np.concatenate([frag_charges, link_charges], axis=0)
anchors = np.zeros_like(charges)
if is_multifrag:
for anchor_idx in map(int, row['anchors'].split('-')):
anchors[anchor_idx] = 1
else:
anchors[row['anchor_1']] = 1
anchors[row['anchor_2']] = 1
fragment_mask = np.concatenate([np.ones_like(frag_charges), np.zeros_like(link_charges)])
linker_mask = np.concatenate([np.zeros_like(frag_charges), np.ones_like(link_charges)])
data.append({
'uuid': uuid,
'name': name,
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions),
})
return data
class MOADDataset(Dataset):
def __init__(self, data_path, prefix, device):
prefix, pocket_mode = prefix.split('.')
dataset_path = os.path.join(data_path, f'{prefix}_{pocket_mode}.pt')
if os.path.exists(dataset_path):
self.data = torch.load(dataset_path, map_location=device)
else:
print(f'Preprocessing dataset with prefix {prefix}')
self.data = MOADDataset.preprocess(data_path, prefix, pocket_mode, device)
torch.save(self.data, dataset_path)
def __len__(self):
return len(self.data)
def __getitem__(self, item):
return self.data[item]
@staticmethod
def preprocess(data_path, prefix, pocket_mode, device):
data = []
table_path = os.path.join(data_path, f'{prefix}_table.csv')
fragments_path = os.path.join(data_path, f'{prefix}_frag.sdf')
linkers_path = os.path.join(data_path, f'{prefix}_link.sdf')
pockets_path = os.path.join(data_path, f'{prefix}_pockets.pkl')
is_geom = True
is_multifrag = 'multifrag' in prefix
with open(pockets_path, 'rb') as f:
pockets = pickle.load(f)
table = pd.read_csv(table_path)
generator = tqdm(
zip(table.iterrows(), read_sdf(fragments_path), read_sdf(linkers_path), pockets),
total=len(table)
)
for (_, row), fragments, linker, pocket_data in generator:
uuid = row['uuid']
name = row['molecule']
frag_pos, frag_one_hot, frag_charges = parse_molecule(fragments, is_geom=is_geom)
link_pos, link_one_hot, link_charges = parse_molecule(linker, is_geom=is_geom)
# Parsing pocket data
pocket_pos = pocket_data[f'{pocket_mode}_coord']
pocket_one_hot = []
pocket_charges = []
for atom_type in pocket_data[f'{pocket_mode}_types']:
pocket_one_hot.append(get_one_hot(atom_type, const.GEOM_ATOM2IDX))
pocket_charges.append(const.GEOM_CHARGES[atom_type])
pocket_one_hot = np.array(pocket_one_hot)
pocket_charges = np.array(pocket_charges)
positions = np.concatenate([frag_pos, pocket_pos, link_pos], axis=0)
one_hot = np.concatenate([frag_one_hot, pocket_one_hot, link_one_hot], axis=0)
charges = np.concatenate([frag_charges, pocket_charges, link_charges], axis=0)
anchors = np.zeros_like(charges)
if is_multifrag:
for anchor_idx in map(int, row['anchors'].split('-')):
anchors[anchor_idx] = 1
else:
anchors[row['anchor_1']] = 1
anchors[row['anchor_2']] = 1
fragment_only_mask = np.concatenate([
np.ones_like(frag_charges),
np.zeros_like(pocket_charges),
np.zeros_like(link_charges)
])
pocket_mask = np.concatenate([
np.zeros_like(frag_charges),
np.ones_like(pocket_charges),
np.zeros_like(link_charges)
])
linker_mask = np.concatenate([
np.zeros_like(frag_charges),
np.zeros_like(pocket_charges),
np.ones_like(link_charges)
])
fragment_mask = np.concatenate([
np.ones_like(frag_charges),
np.ones_like(pocket_charges),
np.zeros_like(link_charges)
])
data.append({
'uuid': uuid,
'name': name,
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device),
'fragment_only_mask': torch.tensor(fragment_only_mask, dtype=const.TORCH_FLOAT, device=device),
'pocket_mask': torch.tensor(pocket_mask, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions),
})
return data
@staticmethod
def create_edges(positions, fragment_mask_only, linker_mask_only):
ligand_mask = fragment_mask_only.astype(bool) | linker_mask_only.astype(bool)
ligand_adj = ligand_mask[:, None] & ligand_mask[None, :]
proximity_adj = np.linalg.norm(positions[:, None, :] - positions[None, :, :], axis=-1) <= 6
full_adj = ligand_adj | proximity_adj
full_adj &= ~np.eye(len(positions)).astype(bool)
curr_rows, curr_cols = np.where(full_adj)
return [curr_rows, curr_cols]
def collate(batch):
out = {}
# Filter out big molecules
if 'pocket_mask' not in batch[0].keys():
batch = [data for data in batch if data['num_atoms'] <= 50]
else:
batch = [data for data in batch if data['num_atoms'] <= 1000]
for i, data in enumerate(batch):
for key, value in data.items():
out.setdefault(key, []).append(value)
for key, value in out.items():
if key in const.DATA_LIST_ATTRS:
continue
if key in const.DATA_ATTRS_TO_PAD:
out[key] = torch.nn.utils.rnn.pad_sequence(value, batch_first=True, padding_value=0)
continue
raise Exception(f'Unknown batch key: {key}')
atom_mask = (out['fragment_mask'].bool() | out['linker_mask'].bool()).to(const.TORCH_INT)
out['atom_mask'] = atom_mask[:, :, None]
batch_size, n_nodes = atom_mask.size()
# In case of MOAD edge_mask is batch_idx
if 'pocket_mask' in batch[0].keys():
batch_mask = torch.cat([
torch.ones(n_nodes, dtype=const.TORCH_INT) * i
for i in range(batch_size)
]).to(atom_mask.device)
out['edge_mask'] = batch_mask
else:
edge_mask = atom_mask[:, None, :] * atom_mask[:, :, None]
diag_mask = ~torch.eye(edge_mask.size(1), dtype=const.TORCH_INT, device=atom_mask.device).unsqueeze(0)
edge_mask *= diag_mask
out['edge_mask'] = edge_mask.view(batch_size * n_nodes * n_nodes, 1)
for key in const.DATA_ATTRS_TO_ADD_LAST_DIM:
if key in out.keys():
out[key] = out[key][:, :, None]
return out
def collate_with_fragment_edges(batch):
out = {}
# Filter out big molecules
batch = [data for data in batch if data['num_atoms'] <= 50]
for i, data in enumerate(batch):
for key, value in data.items():
out.setdefault(key, []).append(value)
for key, value in out.items():
if key in const.DATA_LIST_ATTRS:
continue
if key in const.DATA_ATTRS_TO_PAD:
out[key] = torch.nn.utils.rnn.pad_sequence(value, batch_first=True, padding_value=0)
continue
raise Exception(f'Unknown batch key: {key}')
frag_mask = out['fragment_mask']
edge_mask = frag_mask[:, None, :] * frag_mask[:, :, None]
diag_mask = ~torch.eye(edge_mask.size(1), dtype=const.TORCH_INT, device=frag_mask.device).unsqueeze(0)
edge_mask *= diag_mask
batch_size, n_nodes = frag_mask.size()
out['edge_mask'] = edge_mask.view(batch_size * n_nodes * n_nodes, 1)
# Building edges and covalent bond values
rows, cols, bonds = [], [], []
for batch_idx in range(batch_size):
for i in range(n_nodes):
for j in range(n_nodes):
rows.append(i + batch_idx * n_nodes)
cols.append(j + batch_idx * n_nodes)
edges = [torch.LongTensor(rows).to(frag_mask.device), torch.LongTensor(cols).to(frag_mask.device)]
out['edges'] = edges
atom_mask = (out['fragment_mask'].bool() | out['linker_mask'].bool()).to(const.TORCH_INT)
out['atom_mask'] = atom_mask[:, :, None]
for key in const.DATA_ATTRS_TO_ADD_LAST_DIM:
if key in out.keys():
out[key] = out[key][:, :, None]
return out
def get_dataloader(dataset, batch_size, collate_fn=collate, shuffle=False):
return DataLoader(dataset, batch_size, collate_fn=collate_fn, shuffle=shuffle)
def create_template(tensor, fragment_size, linker_size, fill=0):
values_to_keep = tensor[:fragment_size]
values_to_add = torch.ones(linker_size, tensor.shape[1], dtype=values_to_keep.dtype, device=values_to_keep.device)
values_to_add = values_to_add * fill
return torch.cat([values_to_keep, values_to_add], dim=0)
def create_templates_for_linker_generation(data, linker_sizes):
"""
Takes data batch and new linker size and returns data batch where fragment-related data is the same
but linker-related data is replaced with zero templates with new linker sizes
"""
decoupled_data = []
for i, linker_size in enumerate(linker_sizes):
data_dict = {}
fragment_mask = data['fragment_mask'][i].squeeze()
fragment_size = fragment_mask.sum().int()
for k, v in data.items():
if k == 'num_atoms':
# Computing new number of atoms (fragment_size + linker_size)
data_dict[k] = fragment_size + linker_size
continue
if k in const.DATA_LIST_ATTRS:
# These attributes are written without modification
data_dict[k] = v[i]
continue
if k in const.DATA_ATTRS_TO_PAD:
# Should write fragment-related data + (zeros x linker_size)
fill_value = 1 if k == 'linker_mask' else 0
template = create_template(v[i], fragment_size, linker_size, fill=fill_value)
if k in const.DATA_ATTRS_TO_ADD_LAST_DIM:
template = template.squeeze(-1)
data_dict[k] = template
decoupled_data.append(data_dict)
return collate(decoupled_data)
|