Spaces:
Sleeping
Sleeping
File size: 7,626 Bytes
95ba5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 |
import torch
import os
import imageio
import matplotlib.pyplot as plt
import numpy as np
import glob
import random
from sklearn.decomposition import PCA
from src import const
from src.molecule_builder import get_bond_order
def save_xyz_file(path, one_hot, positions, node_mask, names, is_geom, suffix=''):
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
for batch_i in range(one_hot.size(0)):
mask = node_mask[batch_i].squeeze()
n_atoms = mask.sum()
atom_idx = torch.where(mask)[0]
f = open(os.path.join(path, f'{names[batch_i]}_{suffix}.xyz'), "w")
f.write("%d\n\n" % n_atoms)
atoms = torch.argmax(one_hot[batch_i], dim=1)
for atom_i in atom_idx:
atom = atoms[atom_i].item()
atom = idx2atom[atom]
f.write("%s %.9f %.9f %.9f\n" % (
atom, positions[batch_i, atom_i, 0], positions[batch_i, atom_i, 1], positions[batch_i, atom_i, 2]
))
f.close()
def load_xyz_files(path, suffix=''):
files = []
for fname in os.listdir(path):
if fname.endswith(f'_{suffix}.xyz'):
files.append(fname)
files = sorted(files, key=lambda f: -int(f.replace(f'_{suffix}.xyz', '').split('_')[-1]))
return [os.path.join(path, fname) for fname in files]
def load_molecule_xyz(file, is_geom):
atom2idx = const.GEOM_ATOM2IDX if is_geom else const.ATOM2IDX
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
with open(file, encoding='utf8') as f:
n_atoms = int(f.readline())
one_hot = torch.zeros(n_atoms, len(idx2atom))
charges = torch.zeros(n_atoms, 1)
positions = torch.zeros(n_atoms, 3)
f.readline()
atoms = f.readlines()
for i in range(n_atoms):
atom = atoms[i].split(' ')
atom_type = atom[0]
one_hot[i, atom2idx[atom_type]] = 1
position = torch.Tensor([float(e) for e in atom[1:]])
positions[i, :] = position
return positions, one_hot, charges
def draw_sphere(ax, x, y, z, size, color, alpha):
u = np.linspace(0, 2 * np.pi, 100)
v = np.linspace(0, np.pi, 100)
xs = size * np.outer(np.cos(u), np.sin(v))
ys = size * np.outer(np.sin(u), np.sin(v)) #* 0.8
zs = size * np.outer(np.ones(np.size(u)), np.cos(v))
ax.plot_surface(x + xs, y + ys, z + zs, rstride=2, cstride=2, color=color, alpha=alpha)
def plot_molecule(ax, positions, atom_type, alpha, spheres_3d, hex_bg_color, is_geom, fragment_mask=None):
x = positions[:, 0]
y = positions[:, 1]
z = positions[:, 2]
# Hydrogen, Carbon, Nitrogen, Oxygen, Flourine
idx2atom = const.GEOM_IDX2ATOM if is_geom else const.IDX2ATOM
colors_dic = np.array(const.COLORS)
radius_dic = np.array(const.RADII)
area_dic = 1500 * radius_dic ** 2
areas = area_dic[atom_type]
radii = radius_dic[atom_type]
colors = colors_dic[atom_type]
if fragment_mask is None:
fragment_mask = torch.ones(len(x))
for i in range(len(x)):
for j in range(i + 1, len(x)):
p1 = np.array([x[i], y[i], z[i]])
p2 = np.array([x[j], y[j], z[j]])
dist = np.sqrt(np.sum((p1 - p2) ** 2))
atom1, atom2 = idx2atom[atom_type[i]], idx2atom[atom_type[j]]
draw_edge_int = get_bond_order(atom1, atom2, dist)
line_width = (3 - 2) * 2 * 2
draw_edge = draw_edge_int > 0
if draw_edge:
if draw_edge_int == 4:
linewidth_factor = 1.5
else:
linewidth_factor = 1
linewidth_factor *= 0.5
ax.plot(
[x[i], x[j]], [y[i], y[j]], [z[i], z[j]],
linewidth=line_width * linewidth_factor * 2,
c=hex_bg_color,
alpha=alpha
)
# from pdb import set_trace
# set_trace()
if spheres_3d:
# idx = torch.where(fragment_mask[:len(x)] == 0)[0]
# ax.scatter(
# x[idx],
# y[idx],
# z[idx],
# alpha=0.9 * alpha,
# edgecolors='#FCBA03',
# facecolors='none',
# linewidths=2,
# s=900
# )
for i, j, k, s, c, f in zip(x, y, z, radii, colors, fragment_mask):
if f == 1:
alpha = 1.0
draw_sphere(ax, i.item(), j.item(), k.item(), 0.5 * s, c, alpha)
else:
ax.scatter(x, y, z, s=areas, alpha=0.9 * alpha, c=colors)
def plot_data3d(positions, atom_type, is_geom, camera_elev=0, camera_azim=0, save_path=None, spheres_3d=False,
bg='black', alpha=1., fragment_mask=None):
black = (0, 0, 0)
white = (1, 1, 1)
hex_bg_color = '#FFFFFF' if bg == 'black' else '#000000' #'#666666'
fig = plt.figure(figsize=(10, 10))
ax = fig.add_subplot(projection='3d')
ax.set_aspect('auto')
ax.view_init(elev=camera_elev, azim=camera_azim)
if bg == 'black':
ax.set_facecolor(black)
else:
ax.set_facecolor(white)
ax.xaxis.pane.set_alpha(0)
ax.yaxis.pane.set_alpha(0)
ax.zaxis.pane.set_alpha(0)
ax._axis3don = False
if bg == 'black':
ax.w_xaxis.line.set_color("black")
else:
ax.w_xaxis.line.set_color("white")
plot_molecule(
ax, positions, atom_type, alpha, spheres_3d, hex_bg_color, is_geom=is_geom, fragment_mask=fragment_mask
)
max_value = positions.abs().max().item()
axis_lim = min(40, max(max_value / 1.5 + 0.3, 3.2))
ax.set_xlim(-axis_lim, axis_lim)
ax.set_ylim(-axis_lim, axis_lim)
ax.set_zlim(-axis_lim, axis_lim)
dpi = 120 if spheres_3d else 50
if save_path is not None:
plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0, dpi=dpi)
# plt.savefig(save_path, bbox_inches='tight', pad_inches=0.0, dpi=dpi, transparent=True)
if spheres_3d:
img = imageio.imread(save_path)
img_brighter = np.clip(img * 1.4, 0, 255).astype('uint8')
imageio.imsave(save_path, img_brighter)
else:
plt.show()
plt.close()
def visualize_chain(
path, spheres_3d=False, bg="black", alpha=1.0, wandb=None, mode="chain", is_geom=False, fragment_mask=None
):
files = load_xyz_files(path)
save_paths = []
# Fit PCA to the final molecule – to obtain the best orientation for visualization
positions, one_hot, charges = load_molecule_xyz(files[-1], is_geom=is_geom)
pca = PCA(n_components=3)
pca.fit(positions)
for i in range(len(files)):
file = files[i]
positions, one_hot, charges = load_molecule_xyz(file, is_geom=is_geom)
atom_type = torch.argmax(one_hot, dim=1).numpy()
# Transform positions of each frame according to the best orientation of the last frame
positions = pca.transform(positions)
positions = torch.tensor(positions)
fn = file[:-4] + '.png'
plot_data3d(
positions, atom_type,
save_path=fn,
spheres_3d=spheres_3d,
alpha=alpha,
bg=bg,
camera_elev=90,
camera_azim=90,
is_geom=is_geom,
fragment_mask=fragment_mask,
)
save_paths.append(fn)
imgs = [imageio.imread(fn) for fn in save_paths]
dirname = os.path.dirname(save_paths[0])
gif_path = dirname + '/output.gif'
imageio.mimsave(gif_path, imgs, subrectangles=True)
if wandb is not None:
wandb.log({mode: [wandb.Video(gif_path, caption=gif_path)]})
|