Spaces:
Sleeping
Sleeping
File size: 28,142 Bytes
95ba5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 |
import torch
import torch.nn.functional as F
import numpy as np
import math
from src import utils
from src.egnn import Dynamics
from src.noise import GammaNetwork, PredefinedNoiseSchedule
from typing import Union
from pdb import set_trace
class EDM(torch.nn.Module):
def __init__(
self,
dynamics: Union[Dynamics],
in_node_nf: int,
n_dims: int,
timesteps: int = 1000,
noise_schedule='learned',
noise_precision=1e-4,
loss_type='vlb',
norm_values=(1., 1., 1.),
norm_biases=(None, 0., 0.),
):
super().__init__()
if noise_schedule == 'learned':
assert loss_type == 'vlb', 'A noise schedule can only be learned with a vlb objective'
self.gamma = GammaNetwork()
else:
self.gamma = PredefinedNoiseSchedule(noise_schedule, timesteps=timesteps, precision=noise_precision)
self.dynamics = dynamics
self.in_node_nf = in_node_nf
self.n_dims = n_dims
self.T = timesteps
self.norm_values = norm_values
self.norm_biases = norm_biases
def forward(self, x, h, node_mask, fragment_mask, linker_mask, edge_mask, context=None):
# Normalization and concatenation
x, h = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Volume change loss term
delta_log_px = self.delta_log_px(linker_mask).mean()
# Sample t
t_int = torch.randint(0, self.T + 1, size=(x.size(0), 1), device=x.device).float()
s_int = t_int - 1
t = t_int / self.T
s = s_int / self.T
# Masks for t=0 and t>0
t_is_zero = (t_int == 0).squeeze().float()
t_is_not_zero = 1 - t_is_zero
# Compute gamma_t and gamma_s according to the noise schedule
gamma_t = self.inflate_batch_array(self.gamma(t), x)
gamma_s = self.inflate_batch_array(self.gamma(s), x)
# Compute alpha_t and sigma_t from gamma
alpha_t = self.alpha(gamma_t, x)
sigma_t = self.sigma(gamma_t, x)
# Sample noise
# Note: only for linker
eps_t = self.sample_combined_position_feature_noise(n_samples=x.size(0), n_nodes=x.size(1), mask=linker_mask)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
# Note: keep fragments unchanged
z_t = alpha_t * xh + sigma_t * eps_t
z_t = xh * fragment_mask + z_t * linker_mask
# Neural net prediction
eps_t_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=linker_mask,
context=context,
edge_mask=edge_mask,
)
eps_t_hat = eps_t_hat * linker_mask
# Computing basic error (further used for computing NLL and L2-loss)
error_t = self.sum_except_batch((eps_t - eps_t_hat) ** 2)
# Computing L2-loss for t>0
normalization = (self.n_dims + self.in_node_nf) * self.numbers_of_nodes(linker_mask)
l2_loss = error_t / normalization
l2_loss = l2_loss.mean()
# The KL between q(z_T | x) and p(z_T) = Normal(0, 1) (should be close to zero)
kl_prior = self.kl_prior(xh, linker_mask).mean()
# Computing NLL middle term
SNR_weight = (self.SNR(gamma_s - gamma_t) - 1).squeeze(1).squeeze(1)
loss_term_t = self.T * 0.5 * SNR_weight * error_t
loss_term_t = (loss_term_t * t_is_not_zero).sum() / t_is_not_zero.sum()
# Computing noise returned by dynamics
noise = torch.norm(eps_t_hat, dim=[1, 2])
noise_t = (noise * t_is_not_zero).sum() / t_is_not_zero.sum()
if t_is_zero.sum() > 0:
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)]
neg_log_constants = -self.log_constant_of_p_x_given_z0(x, linker_mask)
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and selected only relevant via masking
loss_term_0 = -self.log_p_xh_given_z0_without_constants(h, z_t, gamma_t, eps_t, eps_t_hat, linker_mask)
loss_term_0 = loss_term_0 + neg_log_constants
loss_term_0 = (loss_term_0 * t_is_zero).sum() / t_is_zero.sum()
# Computing noise returned by dynamics
noise_0 = (noise * t_is_zero).sum() / t_is_zero.sum()
else:
loss_term_0 = 0.
noise_0 = 0.
return delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0
@torch.no_grad()
def sample_chain(self, x, h, node_mask, fragment_mask, linker_mask, edge_mask, context, keep_frames=None):
n_samples = x.size(0)
n_nodes = x.size(1)
# Normalization and concatenation
x, h, = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Initial linker sampling from N(0, I)
z = self.sample_combined_position_feature_noise(n_samples, n_nodes, mask=linker_mask)
z = xh * fragment_mask + z * linker_mask
if keep_frames is None:
keep_frames = self.T
else:
assert keep_frames <= self.T
chain = torch.zeros((keep_frames,) + z.size(), device=z.device)
# Sample p(z_s | z_t)
for s in reversed(range(0, self.T)):
s_array = torch.full((n_samples, 1), fill_value=s, device=z.device)
t_array = s_array + 1
s_array = s_array / self.T
t_array = t_array / self.T
z = self.sample_p_zs_given_zt_only_linker(
s=s_array,
t=t_array,
z_t=z,
node_mask=node_mask,
fragment_mask=fragment_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context,
)
write_index = (s * keep_frames) // self.T
chain[write_index] = self.unnormalize_z(z)
# Finally sample p(x, h | z_0)
x, h = self.sample_p_xh_given_z0_only_linker(
z_0=z,
node_mask=node_mask,
fragment_mask=fragment_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context,
)
chain[0] = torch.cat([x, h], dim=2)
return chain
def sample_p_zs_given_zt_only_linker(self, s, t, z_t, node_mask, fragment_mask, linker_mask, edge_mask, context):
"""Samples from zs ~ p(zs | zt). Only used during sampling. Samples only linker features and coords"""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, z_t)
sigma_s = self.sigma(gamma_s, target_tensor=z_t)
sigma_t = self.sigma(gamma_t, target_tensor=z_t)
# Neural net prediction.
eps_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=linker_mask,
context=context,
edge_mask=edge_mask,
)
eps_hat = eps_hat * linker_mask
# Compute mu for p(z_s | z_t)
mu = z_t / alpha_t_given_s - (sigma2_t_given_s / alpha_t_given_s / sigma_t) * eps_hat
# Compute sigma for p(z_s | z_t)
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample z_s given the parameters derived from zt
z_s = self.sample_normal(mu, sigma, linker_mask)
z_s = z_t * fragment_mask + z_s * linker_mask
return z_s
def sample_p_xh_given_z0_only_linker(self, z_0, node_mask, fragment_mask, linker_mask, edge_mask, context):
"""Samples x ~ p(x|z0). Samples only linker features and coords"""
zeros = torch.zeros(size=(z_0.size(0), 1), device=z_0.device)
gamma_0 = self.gamma(zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0).unsqueeze(1)
eps_hat = self.dynamics.forward(
t=zeros,
xh=z_0,
node_mask=node_mask,
linker_mask=linker_mask,
edge_mask=edge_mask,
context=context
)
eps_hat = eps_hat * linker_mask
mu_x = self.compute_x_pred(eps_t=eps_hat, z_t=z_0, gamma_t=gamma_0)
xh = self.sample_normal(mu=mu_x, sigma=sigma_x, node_mask=linker_mask)
xh = z_0 * fragment_mask + xh * linker_mask
x, h = xh[:, :, :self.n_dims], xh[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
h = F.one_hot(torch.argmax(h, dim=2), self.in_node_nf) * node_mask
return x, h
def compute_x_pred(self, eps_t, z_t, gamma_t):
"""Computes x_pred, i.e. the most likely prediction of x."""
sigma_t = self.sigma(gamma_t, target_tensor=eps_t)
alpha_t = self.alpha(gamma_t, target_tensor=eps_t)
x_pred = 1. / alpha_t * (z_t - sigma_t * eps_t)
return x_pred
def kl_prior(self, xh, mask):
"""
Computes the KL between q(z1 | x) and the prior p(z1) = Normal(0, 1).
This is essentially a lot of work for something that is in practice negligible in the loss.
However, you compute it so that you see it when you've made a mistake in your noise schedule.
"""
# Compute the last alpha value, alpha_T
ones = torch.ones((xh.size(0), 1), device=xh.device)
gamma_T = self.gamma(ones)
alpha_T = self.alpha(gamma_T, xh)
# Compute means
mu_T = alpha_T * xh
mu_T_x, mu_T_h = mu_T[:, :, :self.n_dims], mu_T[:, :, self.n_dims:]
# Compute standard deviations (only batch axis for x-part, inflated for h-part)
sigma_T_x = self.sigma(gamma_T, mu_T_x).view(-1) # Remove inflate, only keep batch dimension for x-part
sigma_T_h = self.sigma(gamma_T, mu_T_h)
# Compute KL for h-part
zeros, ones = torch.zeros_like(mu_T_h), torch.ones_like(sigma_T_h)
kl_distance_h = self.gaussian_kl(mu_T_h, sigma_T_h, zeros, ones)
# Compute KL for x-part
zeros, ones = torch.zeros_like(mu_T_x), torch.ones_like(sigma_T_x)
d = self.dimensionality(mask)
kl_distance_x = self.gaussian_kl_for_dimension(mu_T_x, sigma_T_x, zeros, ones, d=d)
return kl_distance_x + kl_distance_h
def log_constant_of_p_x_given_z0(self, x, mask):
batch_size = x.size(0)
degrees_of_freedom_x = self.dimensionality(mask)
zeros = torch.zeros((batch_size, 1), device=x.device)
gamma_0 = self.gamma(zeros)
# Recall that sigma_x = sqrt(sigma_0^2 / alpha_0^2) = SNR(-0.5 gamma_0)
log_sigma_x = 0.5 * gamma_0.view(batch_size)
return degrees_of_freedom_x * (- log_sigma_x - 0.5 * np.log(2 * np.pi))
def log_p_xh_given_z0_without_constants(self, h, z_0, gamma_0, eps, eps_hat, mask, epsilon=1e-10):
# Discrete properties are predicted directly from z_0
z_h = z_0[:, :, self.n_dims:]
# Take only part over x
eps_x = eps[:, :, :self.n_dims]
eps_hat_x = eps_hat[:, :, :self.n_dims]
# Compute sigma_0 and rescale to the integer scale of the data
sigma_0 = self.sigma(gamma_0, target_tensor=z_0) * self.norm_values[1]
# Computes the error for the distribution N(x | 1 / alpha_0 z_0 + sigma_0/alpha_0 eps_0, sigma_0 / alpha_0),
# the weighting in the epsilon parametrization is exactly '1'
log_p_x_given_z_without_constants = -0.5 * self.sum_except_batch((eps_x - eps_hat_x) ** 2)
# Categorical features
# Compute delta indicator masks
h = h * self.norm_values[1] + self.norm_biases[1]
estimated_h = z_h * self.norm_values[1] + self.norm_biases[1]
# Centered h_cat around 1, since onehot encoded
centered_h = estimated_h - 1
# Compute integrals from 0.5 to 1.5 of the normal distribution
# N(mean=centered_h_cat, stdev=sigma_0_cat)
log_p_h_proportional = torch.log(
self.cdf_standard_gaussian((centered_h + 0.5) / sigma_0) -
self.cdf_standard_gaussian((centered_h - 0.5) / sigma_0) +
epsilon
)
# Normalize the distribution over the categories
log_Z = torch.logsumexp(log_p_h_proportional, dim=2, keepdim=True)
log_probabilities = log_p_h_proportional - log_Z
# Select the log_prob of the current category using the onehot representation
log_p_h_given_z = self.sum_except_batch(log_probabilities * h * mask)
# Combine log probabilities for x and h
log_p_xh_given_z = log_p_x_given_z_without_constants + log_p_h_given_z
return log_p_xh_given_z
def sample_combined_position_feature_noise(self, n_samples, n_nodes, mask):
z_x = utils.sample_gaussian_with_mask(
size=(n_samples, n_nodes, self.n_dims),
device=mask.device,
node_mask=mask
)
z_h = utils.sample_gaussian_with_mask(
size=(n_samples, n_nodes, self.in_node_nf),
device=mask.device,
node_mask=mask
)
z = torch.cat([z_x, z_h], dim=2)
return z
def sample_normal(self, mu, sigma, node_mask):
"""Samples from a Normal distribution."""
eps = self.sample_combined_position_feature_noise(mu.size(0), mu.size(1), node_mask)
return mu + sigma * eps
def normalize(self, x, h):
new_x = x / self.norm_values[0]
new_h = (h.float() - self.norm_biases[1]) / self.norm_values[1]
return new_x, new_h
def unnormalize(self, x, h):
new_x = x * self.norm_values[0]
new_h = h * self.norm_values[1] + self.norm_biases[1]
return new_x, new_h
def unnormalize_z(self, z):
assert z.size(2) == self.n_dims + self.in_node_nf
x, h = z[:, :, :self.n_dims], z[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
return torch.cat([x, h], dim=2)
def delta_log_px(self, mask):
return -self.dimensionality(mask) * np.log(self.norm_values[0])
def dimensionality(self, mask):
return self.numbers_of_nodes(mask) * self.n_dims
def sigma(self, gamma, target_tensor):
"""Computes sigma given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(gamma)), target_tensor)
def alpha(self, gamma, target_tensor):
"""Computes alpha given gamma."""
return self.inflate_batch_array(torch.sqrt(torch.sigmoid(-gamma)), target_tensor)
def SNR(self, gamma):
"""Computes signal to noise ratio (alpha^2/sigma^2) given gamma."""
return torch.exp(-gamma)
def sigma_and_alpha_t_given_s(self, gamma_t: torch.Tensor, gamma_s: torch.Tensor, target_tensor: torch.Tensor):
"""
Computes sigma t given s, using gamma_t and gamma_s. Used during sampling.
These are defined as:
alpha t given s = alpha t / alpha s,
sigma t given s = sqrt(1 - (alpha t given s) ^2 ).
"""
sigma2_t_given_s = self.inflate_batch_array(
-self.expm1(self.softplus(gamma_s) - self.softplus(gamma_t)),
target_tensor
)
# alpha_t_given_s = alpha_t / alpha_s
log_alpha2_t = F.logsigmoid(-gamma_t)
log_alpha2_s = F.logsigmoid(-gamma_s)
log_alpha2_t_given_s = log_alpha2_t - log_alpha2_s
alpha_t_given_s = torch.exp(0.5 * log_alpha2_t_given_s)
alpha_t_given_s = self.inflate_batch_array(alpha_t_given_s, target_tensor)
sigma_t_given_s = torch.sqrt(sigma2_t_given_s)
return sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s
@staticmethod
def numbers_of_nodes(mask):
return torch.sum(mask.squeeze(2), dim=1)
@staticmethod
def inflate_batch_array(array, target):
"""
Inflates the batch array (array) with only a single axis (i.e. shape = (batch_size,),
or possibly more empty axes (i.e. shape (batch_size, 1, ..., 1)) to match the target shape.
"""
target_shape = (array.size(0),) + (1,) * (len(target.size()) - 1)
return array.view(target_shape)
@staticmethod
def sum_except_batch(x):
return x.view(x.size(0), -1).sum(-1)
@staticmethod
def expm1(x: torch.Tensor) -> torch.Tensor:
return torch.expm1(x)
@staticmethod
def softplus(x: torch.Tensor) -> torch.Tensor:
return F.softplus(x)
@staticmethod
def cdf_standard_gaussian(x):
return 0.5 * (1. + torch.erf(x / math.sqrt(2)))
@staticmethod
def gaussian_kl(q_mu, q_sigma, p_mu, p_sigma):
"""
Computes the KL distance between two normal distributions.
Args:
q_mu: Mean of distribution q.
q_sigma: Standard deviation of distribution q.
p_mu: Mean of distribution p.
p_sigma: Standard deviation of distribution p.
Returns:
The KL distance, summed over all dimensions except the batch dim.
"""
kl = torch.log(p_sigma / q_sigma) + 0.5 * (q_sigma ** 2 + (q_mu - p_mu) ** 2) / (p_sigma ** 2) - 0.5
return EDM.sum_except_batch(kl)
@staticmethod
def gaussian_kl_for_dimension(q_mu, q_sigma, p_mu, p_sigma, d):
"""
Computes the KL distance between two normal distributions taking the dimension into account.
Args:
q_mu: Mean of distribution q.
q_sigma: Standard deviation of distribution q.
p_mu: Mean of distribution p.
p_sigma: Standard deviation of distribution p.
d: dimension
Returns:
The KL distance, summed over all dimensions except the batch dim.
"""
mu_norm_2 = EDM.sum_except_batch((q_mu - p_mu) ** 2)
return d * torch.log(p_sigma / q_sigma) + 0.5 * (d * q_sigma ** 2 + mu_norm_2) / (p_sigma ** 2) - 0.5 * d
class InpaintingEDM(EDM):
def forward(self, x, h, node_mask, fragment_mask, linker_mask, edge_mask, context=None):
# Normalization and concatenation
x, h = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Volume change loss term
delta_log_px = self.delta_log_px(node_mask).mean()
# Sample t
t_int = torch.randint(0, self.T + 1, size=(x.size(0), 1), device=x.device).float()
s_int = t_int - 1
t = t_int / self.T
s = s_int / self.T
# Masks for t=0 and t>0
t_is_zero = (t_int == 0).squeeze().float()
t_is_not_zero = 1 - t_is_zero
# Compute gamma_t and gamma_s according to the noise schedule
gamma_t = self.inflate_batch_array(self.gamma(t), x)
gamma_s = self.inflate_batch_array(self.gamma(s), x)
# Compute alpha_t and sigma_t from gamma
alpha_t = self.alpha(gamma_t, x)
sigma_t = self.sigma(gamma_t, x)
# Sample noise
eps_t = self.sample_combined_position_feature_noise(n_samples=x.size(0), n_nodes=x.size(1), mask=node_mask)
# Sample z_t given x, h for timestep t, from q(z_t | x, h)
# Note: keep fragments unchanged
z_t = alpha_t * xh + sigma_t * eps_t
# Neural net prediction
eps_t_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=None,
context=context,
edge_mask=edge_mask,
)
# Computing basic error (further used for computing NLL and L2-loss)
error_t = self.sum_except_batch((eps_t - eps_t_hat) ** 2)
# Computing L2-loss for t>0
normalization = (self.n_dims + self.in_node_nf) * self.numbers_of_nodes(node_mask)
l2_loss = error_t / normalization
l2_loss = l2_loss.mean()
# The KL between q(z_T | x) and p(z_T) = Normal(0, 1) (should be close to zero)
kl_prior = self.kl_prior(xh, node_mask).mean()
# Computing NLL middle term
SNR_weight = (self.SNR(gamma_s - gamma_t) - 1).squeeze(1).squeeze(1)
loss_term_t = self.T * 0.5 * SNR_weight * error_t
loss_term_t = (loss_term_t * t_is_not_zero).sum() / t_is_not_zero.sum()
# Computing noise returned by dynamics
noise = torch.norm(eps_t_hat, dim=[1, 2])
noise_t = (noise * t_is_not_zero).sum() / t_is_not_zero.sum()
if t_is_zero.sum() > 0:
# The _constants_ depending on sigma_0 from the
# cross entropy term E_q(z0 | x) [log p(x | z0)]
neg_log_constants = -self.log_constant_of_p_x_given_z0(x, node_mask)
# Computes the L_0 term (even if gamma_t is not actually gamma_0)
# and selected only relevant via masking
loss_term_0 = -self.log_p_xh_given_z0_without_constants(h, z_t, gamma_t, eps_t, eps_t_hat, node_mask)
loss_term_0 = loss_term_0 + neg_log_constants
loss_term_0 = (loss_term_0 * t_is_zero).sum() / t_is_zero.sum()
# Computing noise returned by dynamics
noise_0 = (noise * t_is_zero).sum() / t_is_zero.sum()
else:
loss_term_0 = 0.
noise_0 = 0.
return delta_log_px, kl_prior, loss_term_t, loss_term_0, l2_loss, noise_t, noise_0
@torch.no_grad()
def sample_chain(self, x, h, node_mask, edge_mask, fragment_mask, linker_mask, context, keep_frames=None):
n_samples = x.size(0)
n_nodes = x.size(1)
# Normalization and concatenation
x, h, = self.normalize(x, h)
xh = torch.cat([x, h], dim=2)
# Sampling initial noise
z = self.sample_combined_position_feature_noise(n_samples, n_nodes, node_mask)
if keep_frames is None:
keep_frames = self.T
else:
assert keep_frames <= self.T
chain = torch.zeros((keep_frames,) + z.size(), device=z.device)
# Sample p(z_s | z_t)
for s in reversed(range(0, self.T)):
s_array = torch.full((n_samples, 1), fill_value=s, device=z.device)
t_array = s_array + 1
s_array = s_array / self.T
t_array = t_array / self.T
z_linker_only_sampled = self.sample_p_zs_given_zt(
s=s_array,
t=t_array,
z_t=z,
node_mask=node_mask,
edge_mask=edge_mask,
context=context,
)
z_fragments_only_sampled = self.sample_q_zs_given_zt_and_x(
s=s_array,
t=t_array,
z_t=z,
x=xh * fragment_mask,
node_mask=fragment_mask,
)
z = z_linker_only_sampled * linker_mask + z_fragments_only_sampled * fragment_mask
# Project down to avoid numerical runaway of the center of gravity
z_x = utils.remove_mean_with_mask(z[:, :, :self.n_dims], node_mask)
z_h = z[:, :, self.n_dims:]
z = torch.cat([z_x, z_h], dim=2)
# Saving step to the chain
write_index = (s * keep_frames) // self.T
chain[write_index] = self.unnormalize_z(z)
# Finally sample p(x, h | z_0)
x_out_linker, h_out_linker = self.sample_p_xh_given_z0(
z_0=z,
node_mask=node_mask,
edge_mask=edge_mask,
context=context,
)
x_out_fragments, h_out_fragments = self.sample_q_xh_given_z0_and_x(z_0=z, node_mask=node_mask)
xh_out_linker = torch.cat([x_out_linker, h_out_linker], dim=2)
xh_out_fragments = torch.cat([x_out_fragments, h_out_fragments], dim=2)
xh_out = xh_out_linker * linker_mask + xh_out_fragments * fragment_mask
# Overwrite last frame with the resulting x and h
chain[0] = xh_out
return chain
def sample_p_zs_given_zt(self, s, t, z_t, node_mask, edge_mask, context):
"""Samples from zs ~ p(zs | zt). Only used during sampling"""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, z_t)
sigma_s = self.sigma(gamma_s, target_tensor=z_t)
sigma_t = self.sigma(gamma_t, target_tensor=z_t)
# Neural net prediction.
eps_hat = self.dynamics.forward(
xh=z_t,
t=t,
node_mask=node_mask,
linker_mask=None,
edge_mask=edge_mask,
context=context
)
# Checking that epsilon is centered around linker COM
utils.assert_mean_zero_with_mask(eps_hat[:, :, :self.n_dims], node_mask)
# Compute mu for p(z_s | z_t)
mu = z_t / alpha_t_given_s - (sigma2_t_given_s / alpha_t_given_s / sigma_t) * eps_hat
# Compute sigma for p(z_s | z_t)
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample z_s given the parameters derived from z_t
z_s = self.sample_normal(mu, sigma, node_mask)
return z_s
def sample_q_zs_given_zt_and_x(self, s, t, z_t, x, node_mask):
"""Samples from zs ~ q(zs | zt, x). Only used during sampling. Samples only linker features and coords"""
gamma_s = self.gamma(s)
gamma_t = self.gamma(t)
sigma2_t_given_s, sigma_t_given_s, alpha_t_given_s = self.sigma_and_alpha_t_given_s(gamma_t, gamma_s, z_t)
sigma_s = self.sigma(gamma_s, target_tensor=z_t)
sigma_t = self.sigma(gamma_t, target_tensor=z_t)
alpha_s = self.alpha(gamma_s, x)
mu = (
alpha_t_given_s * (sigma_s ** 2) / (sigma_t ** 2) * z_t +
alpha_s * sigma2_t_given_s / (sigma_t ** 2) * x
)
# Compute sigma for p(zs | zt)
sigma = sigma_t_given_s * sigma_s / sigma_t
# Sample zs given the parameters derived from zt
z_s = self.sample_normal(mu, sigma, node_mask)
return z_s
def sample_p_xh_given_z0(self, z_0, node_mask, edge_mask, context):
"""Samples x ~ p(x|z0). Samples only linker features and coords"""
zeros = torch.zeros(size=(z_0.size(0), 1), device=z_0.device)
gamma_0 = self.gamma(zeros)
# Computes sqrt(sigma_0^2 / alpha_0^2)
sigma_x = self.SNR(-0.5 * gamma_0).unsqueeze(1)
eps_hat = self.dynamics.forward(
xh=z_0,
t=zeros,
node_mask=node_mask,
linker_mask=None,
edge_mask=edge_mask,
context=context
)
utils.assert_mean_zero_with_mask(eps_hat[:, :, :self.n_dims], node_mask)
mu_x = self.compute_x_pred(eps_hat, z_0, gamma_0)
xh = self.sample_normal(mu=mu_x, sigma=sigma_x, node_mask=node_mask)
x, h = xh[:, :, :self.n_dims], xh[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
h = F.one_hot(torch.argmax(h, dim=2), self.in_node_nf) * node_mask
return x, h
def sample_q_xh_given_z0_and_x(self, z_0, node_mask):
"""Samples x ~ q(x|z0). Samples only linker features and coords"""
zeros = torch.zeros(size=(z_0.size(0), 1), device=z_0.device)
gamma_0 = self.gamma(zeros)
alpha_0 = self.alpha(gamma_0, z_0)
sigma_0 = self.sigma(gamma_0, z_0)
eps = self.sample_combined_position_feature_noise(z_0.size(0), z_0.size(1), node_mask)
xh = (1 / alpha_0) * z_0 - (sigma_0 / alpha_0) * eps
x, h = xh[:, :, :self.n_dims], xh[:, :, self.n_dims:]
x, h = self.unnormalize(x, h)
h = F.one_hot(torch.argmax(h, dim=2), self.in_node_nf) * node_mask
return x, h
def sample_combined_position_feature_noise(self, n_samples, n_nodes, mask):
z_x = utils.sample_center_gravity_zero_gaussian_with_mask(
size=(n_samples, n_nodes, self.n_dims),
device=mask.device,
node_mask=mask
)
z_h = utils.sample_gaussian_with_mask(
size=(n_samples, n_nodes, self.in_node_nf),
device=mask.device,
node_mask=mask
)
z = torch.cat([z_x, z_h], dim=2)
return z
def dimensionality(self, mask):
return (self.numbers_of_nodes(mask) - 1) * self.n_dims
|