Spaces:
Sleeping
Sleeping
File size: 8,687 Bytes
95ba5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import csv
import numpy as np
from rdkit import Chem
from rdkit.Chem import MolStandardize
from src import metrics
from src.delinker_utils import sascorer, calc_SC_RDKit
from tqdm import tqdm
from pdb import set_trace
def get_valid_as_in_delinker(data, progress=False):
valid = []
generator = tqdm(enumerate(data), total=len(data)) if progress else enumerate(data)
for i, m in generator:
pred_mol = Chem.MolFromSmiles(m['pred_mol_smi'], sanitize=False)
true_mol = Chem.MolFromSmiles(m['true_mol_smi'], sanitize=False)
frag = Chem.MolFromSmiles(m['frag_smi'], sanitize=False)
pred_mol_frags = Chem.GetMolFrags(pred_mol, asMols=True, sanitizeFrags=False)
pred_mol_filtered = max(pred_mol_frags, default=pred_mol, key=lambda mol: mol.GetNumAtoms())
try:
Chem.SanitizeMol(pred_mol_filtered)
Chem.SanitizeMol(true_mol)
Chem.SanitizeMol(frag)
except:
continue
if len(pred_mol_filtered.GetSubstructMatch(frag)) > 0:
valid.append({
'pred_mol': m['pred_mol'],
'true_mol': m['true_mol'],
'pred_mol_smi': Chem.MolToSmiles(pred_mol_filtered),
'true_mol_smi': Chem.MolToSmiles(true_mol),
'frag_smi': Chem.MolToSmiles(frag)
})
return valid
def extract_linker_smiles(molecule, fragments):
match = molecule.GetSubstructMatch(fragments)
elinker = Chem.EditableMol(molecule)
for atom_id in sorted(match, reverse=True):
elinker.RemoveAtom(atom_id)
linker = elinker.GetMol()
Chem.RemoveStereochemistry(linker)
try:
linker = MolStandardize.canonicalize_tautomer_smiles(Chem.MolToSmiles(linker))
except:
linker = Chem.MolToSmiles(linker)
return linker
def compute_and_add_linker_smiles(data, progress=False):
data_with_linkers = []
generator = tqdm(data) if progress else data
for m in generator:
pred_mol = Chem.MolFromSmiles(m['pred_mol_smi'], sanitize=True)
true_mol = Chem.MolFromSmiles(m['true_mol_smi'], sanitize=True)
frag = Chem.MolFromSmiles(m['frag_smi'], sanitize=True)
pred_linker = extract_linker_smiles(pred_mol, frag)
true_linker = extract_linker_smiles(true_mol, frag)
data_with_linkers.append({
**m,
'pred_linker': pred_linker,
'true_linker': true_linker,
})
return data_with_linkers
def compute_uniqueness(data, progress=False):
mol_dictionary = {}
generator = tqdm(data) if progress else data
for m in generator:
frag = m['frag_smi']
pred_mol = m['pred_mol_smi']
true_mol = m['true_mol_smi']
key = f'{true_mol}.{frag}'
mol_dictionary.setdefault(key, []).append(pred_mol)
total_mol = 0
unique_mol = 0
for molecules in mol_dictionary.values():
total_mol += len(molecules)
unique_mol += len(set(molecules))
return unique_mol / total_mol
def compute_novelty(data, progress=False):
novel = 0
true_linkers = set([m['true_linker'] for m in data])
generator = tqdm(data) if progress else data
for m in generator:
pred_linker = m['pred_linker']
if pred_linker in true_linkers:
continue
else:
novel += 1
return novel / len(data)
def compute_recovery_rate(data, progress=False):
total = set()
recovered = set()
generator = tqdm(data) if progress else data
for m in generator:
pred_mol = Chem.MolFromSmiles(m['pred_mol_smi'], sanitize=True)
Chem.RemoveStereochemistry(pred_mol)
pred_mol = Chem.MolToSmiles(Chem.RemoveHs(pred_mol))
true_mol = Chem.MolFromSmiles(m['true_mol_smi'], sanitize=True)
Chem.RemoveStereochemistry(true_mol)
true_mol = Chem.MolToSmiles(Chem.RemoveHs(true_mol))
true_link = m['true_linker']
total.add(f'{true_mol}.{true_link}')
if pred_mol == true_mol:
recovered.add(f'{true_mol}.{true_link}')
return len(recovered) / len(total)
def calc_sa_score_mol(mol):
if mol is None:
return None
return sascorer.calculateScore(mol)
def check_ring_filter(linker):
check = True
# Get linker rings
ssr = Chem.GetSymmSSSR(linker)
# Check rings
for ring in ssr:
for atom_idx in ring:
for bond in linker.GetAtomWithIdx(atom_idx).GetBonds():
if bond.GetBondType() == 2 and bond.GetBeginAtomIdx() in ring and bond.GetEndAtomIdx() in ring:
check = False
return check
def check_pains(mol, pains_smarts):
for pain in pains_smarts:
if mol.HasSubstructMatch(pain):
return False
return True
def calc_2d_filters(toks, pains_smarts):
pred_mol = Chem.MolFromSmiles(toks['pred_mol_smi'])
frag = Chem.MolFromSmiles(toks['frag_smi'])
linker = Chem.MolFromSmiles(toks['pred_linker'])
result = [False, False, False]
if len(pred_mol.GetSubstructMatch(frag)) > 0:
sa_score = False
ra_score = False
pains_score = False
try:
sa_score = calc_sa_score_mol(pred_mol) < calc_sa_score_mol(frag)
except Exception as e:
print(f'Could not compute SA score: {e}')
try:
ra_score = check_ring_filter(linker)
except Exception as e:
print(f'Could not compute RA score: {e}')
try:
pains_score = check_pains(pred_mol, pains_smarts)
except Exception as e:
print(f'Could not compute PAINS score: {e}')
result = [sa_score, ra_score, pains_score]
return result
def calc_filters_2d_dataset(data):
with open('models/wehi_pains.csv', 'r') as f:
pains_smarts = [Chem.MolFromSmarts(line[0], mergeHs=True) for line in csv.reader(f)]
pass_all = pass_SA = pass_RA = pass_PAINS = 0
for m in data:
filters_2d = calc_2d_filters(m, pains_smarts)
pass_all += filters_2d[0] & filters_2d[1] & filters_2d[2]
pass_SA += filters_2d[0]
pass_RA += filters_2d[1]
pass_PAINS += filters_2d[2]
return pass_all / len(data), pass_SA / len(data), pass_RA / len(data), pass_PAINS / len(data)
def calc_sc_rdkit_full_mol(gen_mol, ref_mol):
try:
score = calc_SC_RDKit.calc_SC_RDKit_score(gen_mol, ref_mol)
return score
except:
return -0.5
def sc_rdkit_score(data):
scores = []
for m in data:
score = calc_sc_rdkit_full_mol(m['pred_mol'], m['true_mol'])
scores.append(score)
return np.mean(scores)
def get_delinker_metrics(pred_molecules, true_molecules, true_fragments):
default_values = {
'DeLinker/validity': 0,
'DeLinker/uniqueness': 0,
'DeLinker/novelty': 0,
'DeLinker/recovery': 0,
'DeLinker/2D_filters': 0,
'DeLinker/2D_filters_SA': 0,
'DeLinker/2D_filters_RA': 0,
'DeLinker/2D_filters_PAINS': 0,
'DeLinker/SC_RDKit': 0,
}
if len(pred_molecules) == 0:
return default_values
data = []
for pred_mol, true_mol, true_frag in zip(pred_molecules, true_molecules, true_fragments):
data.append({
'pred_mol': pred_mol,
'true_mol': true_mol,
'pred_mol_smi': Chem.MolToSmiles(pred_mol),
'true_mol_smi': Chem.MolToSmiles(true_mol),
'frag_smi': Chem.MolToSmiles(true_frag)
})
# Validity according to DeLinker paper:
# Passing rdkit.Chem.Sanitize and the biggest fragment contains both fragments
valid_data = get_valid_as_in_delinker(data)
validity_as_in_delinker = len(valid_data) / len(data)
if len(valid_data) == 0:
return default_values
# Compute linkers and add to results
valid_data = compute_and_add_linker_smiles(valid_data)
# Compute uniqueness
uniqueness = compute_uniqueness(valid_data)
# Compute novelty
novelty = compute_novelty(valid_data)
# Compute recovered molecules
recovery_rate = compute_recovery_rate(valid_data)
# 2D filters
pass_all, pass_SA, pass_RA, pass_PAINS = calc_filters_2d_dataset(valid_data)
# 3D Filters
sc_rdkit = sc_rdkit_score(valid_data)
return {
'DeLinker/validity': validity_as_in_delinker,
'DeLinker/uniqueness': uniqueness,
'DeLinker/novelty': novelty,
'DeLinker/recovery': recovery_rate,
'DeLinker/2D_filters': pass_all,
'DeLinker/2D_filters_SA': pass_SA,
'DeLinker/2D_filters_RA': pass_RA,
'DeLinker/2D_filters_PAINS': pass_PAINS,
'DeLinker/SC_RDKit': sc_rdkit,
}
|