Spaces:
Sleeping
Sleeping
File size: 9,251 Bytes
5de53c3 7782ac2 b0ab0d5 7782ac2 95ba5bc 52bf9df 95ba5bc 7782ac2 3c26059 5de53c3 53f22d0 5de53c3 7782ac2 95ba5bc 49021fb 95ba5bc ff9d86b 95ba5bc ff9d86b 95ba5bc d1da608 95ba5bc 0673854 95ba5bc 52bf9df b7813c6 52bf9df a05c989 52bf9df eb031b7 6264fac aa9b17f 52bf9df 7782ac2 0673854 53f22d0 7c181a3 3c26059 95ba5bc b0ab0d5 f9310fd 95ba5bc b0ab0d5 95ba5bc b0ab0d5 95ba5bc 3c26059 95ba5bc aa9b17f 95ba5bc 3c26059 95ba5bc 3c26059 4f94923 eb031b7 6264fac c95aee1 4f94923 7782ac2 52e7c95 bec2844 7782ac2 711f689 52bf9df aa9b17f 7a6d6dd 05e91b8 7a6d6dd 05e91b8 f1c7e08 52bf9df f58a645 eb031b7 7a7c7ad eb031b7 52bf9df 7a6d6dd aa9b17f 05e91b8 aa9b17f 0ce499b 6f4a6fd aa9b17f 6f4a6fd 6264fac eb031b7 6264fac b7813c6 5de53c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import argparse
import gradio as gr
import numpy as np
import os
import torch
import subprocess
import output
from rdkit import Chem
from src import const
from src.visualizer import save_xyz_file
from src.datasets import get_dataloader, collate_with_fragment_edges, parse_molecule
from src.lightning import DDPM
from src.linker_size_lightning import SizeClassifier
N_SAMPLES = 5
parser = argparse.ArgumentParser()
parser.add_argument('--ip', type=str, default=None)
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs("results", exist_ok=True)
os.makedirs("models", exist_ok=True)
size_gnn_path = 'models/geom_size_gnn.ckpt'
if not os.path.exists(size_gnn_path):
print('Downloading SizeGNN model...')
link = 'https://zenodo.org/record/7121300/files/geom_size_gnn.ckpt?download=1'
subprocess.run(f'wget {link} -O {size_gnn_path}', shell=True)
size_nn = SizeClassifier.load_from_checkpoint('models/geom_size_gnn.ckpt', map_location=device).eval().to(device)
print('Loaded SizeGNN model')
diffusion_path = 'models/geom_difflinker.ckpt'
if not os.path.exists(diffusion_path):
print('Downloading Diffusion model...')
link = 'https://zenodo.org/record/7121300/files/geom_difflinker.ckpt?download=1'
subprocess.run(f'wget {link} -O {diffusion_path}', shell=True)
ddpm = DDPM.load_from_checkpoint('models/geom_difflinker.ckpt', map_location=device).eval().to(device)
print('Loaded diffusion model')
def sample_fn(_data):
output, _ = size_nn.forward(_data, return_loss=False)
probabilities = torch.softmax(output, dim=1)
distribution = torch.distributions.Categorical(probs=probabilities)
samples = distribution.sample()
sizes = []
for label in samples.detach().cpu().numpy():
sizes.append(size_nn.linker_id2size[label])
sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long)
return sizes
def read_molecule_content(path):
with open(path, "r") as f:
return "".join(f.readlines())
def read_molecule(path):
if path.endswith('.pdb'):
return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol'):
return Chem.MolFromMolFile(path, sanitize=False, removeHs=True)
elif path.endswith('.mol2'):
return Chem.MolFromMol2File(path, sanitize=False, removeHs=True)
elif path.endswith('.sdf'):
return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0]
raise Exception('Unknown file extension')
def show_input(input_file):
if input_file is None:
return ''
if isinstance(input_file, str):
path = input_file
else:
path = input_file.name
extension = path.split('.')[-1]
if extension not in ['sdf', 'pdb', 'mol', 'mol2']:
msg = output.INVALID_FORMAT_MSG.format(extension=extension)
return output.IFRAME_TEMPLATE.format(html=msg)
try:
molecule = read_molecule_content(path)
except Exception as e:
return f'Could not read the molecule: {e}'
html = output.INITIAL_RENDERING_TEMPLATE.format(molecule=molecule, fmt=extension)
return output.IFRAME_TEMPLATE.format(html=html)
def draw_sample(idx, out_files):
in_file = out_files[0]
in_sdf = in_file if isinstance(in_file, str) else in_file.name
out_file = out_files[idx + 1]
out_sdf = out_file if isinstance(out_file, str) else out_file.name
input_fragments_content = read_molecule_content(in_sdf)
generated_molecule_content = read_molecule_content(out_sdf)
html = output.SAMPLES_RENDERING_TEMPLATE.format(
fragments=input_fragments_content,
fragments_fmt='sdf',
molecule=generated_molecule_content,
molecule_fmt='sdf',
)
return output.IFRAME_TEMPLATE.format(html=html)
def generate(input_file, n_steps):
if input_file is None:
return ''
path = input_file.name
extension = path.split('.')[-1]
if extension not in ['sdf', 'pdb', 'mol', 'mol2']:
msg = output.INVALID_FORMAT_MSG.format(extension=extension)
return output.IFRAME_TEMPLATE.format(html=msg)
try:
molecule = read_molecule(path)
molecule = Chem.RemoveAllHs(molecule)
name = '.'.join(path.split('/')[-1].split('.')[:-1])
inp_sdf = f'results/input_{name}.sdf'
except Exception as e:
return f'Could not read the molecule: {e}'
if molecule.GetNumAtoms() > 50:
return f'Too large molecule: upper limit is 50 heavy atoms'
with Chem.SDWriter(inp_sdf) as w:
w.write(molecule)
positions, one_hot, charges = parse_molecule(molecule, is_geom=True)
anchors = np.zeros_like(charges)
fragment_mask = np.ones_like(charges)
linker_mask = np.zeros_like(charges)
print('Read and parsed molecule')
dataset = [{
'uuid': '0',
'name': '0',
'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device),
'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device),
'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device),
'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device),
'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device),
'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device),
'num_atoms': len(positions),
}] * N_SAMPLES
dataloader = get_dataloader(dataset, batch_size=N_SAMPLES, collate_fn=collate_with_fragment_edges)
print('Created dataloader')
ddpm.edm.T = n_steps
for data in dataloader:
chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1)
print('Generated linker')
x = chain[0][:, :, :ddpm.n_dims]
h = chain[0][:, :, ddpm.n_dims:]
names = [f'output_{i+1}_{name}' for i in range(N_SAMPLES)]
save_xyz_file('results', h, x, node_mask, names=names, is_geom=True, suffix='')
print('Saved XYZ files')
break
out_files = []
for i in range(N_SAMPLES):
out_xyz = f'results/output_{i+1}_{name}_.xyz'
out_sdf = f'results/output_{i+1}_{name}_.sdf'
subprocess.run(f'obabel {out_xyz} -O {out_sdf}', shell=True)
out_files.append(out_sdf)
print('Converted to SDF')
return [
draw_sample(0, out_files),
[inp_sdf] + out_files,
gr.Radio.update(visible=True, value='Sample 1')
]
demo = gr.Blocks()
with demo:
gr.Markdown('# DiffLinker: Equivariant 3D-Conditional Diffusion Model for Molecular Linker Design')
gr.Markdown(
'Given a set of disconnected fragments in 3D, '
'DiffLinker places missing atoms in between and designs a molecule incorporating all the initial fragments. '
'Our method can link an arbitrary number of fragments, requires no information on the attachment atoms '
'and linker size, and can be conditioned on the protein pockets.'
)
gr.Markdown(
'[**[Paper]**](https://arxiv.org/abs/2210.05274) '
'[**[Code]**](https://github.com/igashov/DiffLinker)'
)
with gr.Box():
with gr.Row():
with gr.Column():
gr.Markdown('## Input Fragments')
gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:')
input_file = gr.File(file_count='single', label='Input Fragments')
n_steps = gr.Slider(minimum=10, maximum=500, label="Number of Diffusion Steps", step=10)
examples = gr.Dataset(
components=[gr.File(visible=False)],
samples=[['examples/example_1.sdf'], ['examples/example_2.sdf']],
type='index',
)
button = gr.Button('Generate Linker!')
gr.Markdown('')
gr.Markdown('## Output Files')
gr.Markdown('Download files with the generated molecules here:')
output_files = gr.File(file_count='multiple', label='Output Files')
with gr.Column():
gr.Markdown('## Visualization')
# gr.Markdown('Below you will see input and output molecules')
samples = gr.Radio(
choices=['Sample 1', 'Sample 2', 'Sample 3', 'Sample 4', 'Sample 5'],
value='Sample 1',
type='index',
show_label=False,
visible=False,
interactive=True,
)
visualization = gr.HTML()
input_file.change(
fn=show_input,
inputs=[input_file],
outputs=[visualization],
)
examples.click(
fn=lambda idx: [f'examples/example_{idx+1}.sdf', 10, show_input(f'examples/example_{idx+1}.sdf')],
inputs=[examples],
outputs=[input_file, n_steps, visualization]
)
button.click(
fn=generate,
inputs=[input_file, n_steps],
outputs=[visualization, output_files, samples],
)
samples.change(
fn=draw_sample,
inputs=[samples, output_files],
outputs=[visualization],
)
demo.launch(server_name=args.ip)
|