Spaces:
Sleeping
Sleeping
File size: 17,018 Bytes
95ba5bc f97fe8b 95ba5bc d5b42eb 95ba5bc d1da608 95ba5bc d1da608 95ba5bc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 |
import pytorch_lightning as pl
import torch
from src.const import ZINC_TRAIN_LINKER_ID2SIZE, ZINC_TRAIN_LINKER_SIZE2ID
from src.linker_size import SizeGNN
from src.egnn import coord2diff
from src.datasets import ZincDataset, get_dataloader, collate_with_fragment_edges
from typing import Dict, List, Optional
from torch.nn.functional import cross_entropy, mse_loss, sigmoid
from pdb import set_trace
class SizeClassifier(pl.LightningModule):
train_dataset = None
val_dataset = None
test_dataset = None
metrics: Dict[str, List[float]] = {}
def __init__(
self, data_path, train_data_prefix, val_data_prefix,
in_node_nf, hidden_nf, out_node_nf, n_layers, batch_size, lr, torch_device,
normalization=None,
loss_weights=None,
min_linker_size=None,
linker_size2id=ZINC_TRAIN_LINKER_SIZE2ID,
linker_id2size=ZINC_TRAIN_LINKER_ID2SIZE,
task='classification',
):
super(SizeClassifier, self).__init__()
self.save_hyperparameters()
self.data_path = data_path
self.train_data_prefix = train_data_prefix
self.val_data_prefix = val_data_prefix
self.min_linker_size = min_linker_size
self.linker_size2id = linker_size2id
self.linker_id2size = linker_id2size
self.batch_size = batch_size
self.lr = lr
self.torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.loss_weights = None if loss_weights is None else torch.tensor(loss_weights, device=self.torch_device)
self.gnn = SizeGNN(
in_node_nf=in_node_nf,
hidden_nf=hidden_nf,
out_node_nf=out_node_nf,
n_layers=n_layers,
device=self.torch_device,
normalization=normalization,
)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.train_data_prefix,
device=self.torch_device
)
self.val_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
elif stage == 'val':
self.val_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
else:
raise NotImplementedError
def train_dataloader(self):
return get_dataloader(self.train_dataset, self.batch_size, collate_fn=collate_with_fragment_edges, shuffle=True)
def val_dataloader(self):
return get_dataloader(self.val_dataset, self.batch_size, collate_fn=collate_with_fragment_edges)
def test_dataloader(self):
return get_dataloader(self.test_dataset, self.batch_size, collate_fn=collate_with_fragment_edges)
def forward(self, data, return_loss=True):
h = data['one_hot']
x = data['positions']
fragment_mask = data['fragment_mask']
linker_mask = data['linker_mask']
edge_mask = data['edge_mask']
edges = data['edges']
# Considering only fragments
x = x * fragment_mask
h = h * fragment_mask
# Reshaping
bs, n_nodes = x.shape[0], x.shape[1]
fragment_mask = fragment_mask.view(bs * n_nodes, 1)
x = x.view(bs * n_nodes, -1)
h = h.view(bs * n_nodes, -1)
# Prediction
distances, _ = coord2diff(x, edges)
distance_edge_mask = (edge_mask.bool() & (distances < 6)).long()
output = self.gnn.forward(h, edges, distances, fragment_mask, distance_edge_mask)
output = output.view(bs, n_nodes, -1).mean(1)
if return_loss:
true = self.get_true_labels(linker_mask)
loss = cross_entropy(output, true, weight=self.loss_weights)
else:
loss = None
return output, loss
def get_true_labels(self, linker_mask):
labels = []
sizes = linker_mask.squeeze().sum(-1).long().detach().cpu().numpy()
for size in sizes:
label = self.linker_size2id.get(size)
if label is None:
label = self.linker_size2id[max(self.linker_id2size)]
labels.append(label)
labels = torch.tensor(labels, device=linker_mask.device, dtype=torch.long)
return labels
def training_step(self, data, *args):
_, loss = self.forward(data)
return {'loss': loss}
def validation_step(self, data, *args):
_, loss = self.forward(data)
return {'loss': loss}
def test_step(self, data, *args):
loss = self.forward(data)
return {'loss': loss}
def training_epoch_end(self, training_step_outputs):
for metric in training_step_outputs[0].keys():
avg_metric = self.aggregate_metric(training_step_outputs, metric)
self.metrics.setdefault(f'{metric}/train', []).append(avg_metric)
self.log(f'{metric}/train', avg_metric, prog_bar=True)
def validation_epoch_end(self, validation_step_outputs):
for metric in validation_step_outputs[0].keys():
avg_metric = self.aggregate_metric(validation_step_outputs, metric)
self.metrics.setdefault(f'{metric}/val', []).append(avg_metric)
self.log(f'{metric}/val', avg_metric, prog_bar=True)
correct = 0
total = 0
for data in self.val_dataloader():
output, _ = self.forward(data)
pred = output.argmax(dim=-1)
true = self.get_true_labels(data['linker_mask'])
correct += (pred == true).sum()
total += len(pred)
accuracy = correct / total
self.metrics.setdefault(f'accuracy/val', []).append(accuracy)
self.log(f'accuracy/val', accuracy, prog_bar=True)
def configure_optimizers(self):
return torch.optim.AdamW(self.gnn.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12)
@staticmethod
def aggregate_metric(step_outputs, metric):
return torch.tensor([out[metric] for out in step_outputs]).mean()
class SizeOrdinalClassifier(pl.LightningModule):
train_dataset = None
val_dataset = None
test_dataset = None
metrics: Dict[str, List[float]] = {}
def __init__(
self, data_path, train_data_prefix, val_data_prefix,
in_node_nf, hidden_nf, out_node_nf, n_layers, batch_size, lr, torch_device,
normalization=None,
min_linker_size=None,
linker_size2id=ZINC_TRAIN_LINKER_SIZE2ID,
linker_id2size=ZINC_TRAIN_LINKER_ID2SIZE,
task='ordinal',
):
super(SizeOrdinalClassifier, self).__init__()
self.save_hyperparameters()
self.data_path = data_path
self.train_data_prefix = train_data_prefix
self.val_data_prefix = val_data_prefix
self.min_linker_size = min_linker_size
self.batch_size = batch_size
self.lr = lr
self.torch_device = torch_device
self.linker_size2id = linker_size2id
self.linker_id2size = linker_id2size
self.gnn = SizeGNN(
in_node_nf=in_node_nf,
hidden_nf=hidden_nf,
out_node_nf=out_node_nf,
n_layers=n_layers,
device=torch_device,
normalization=normalization,
)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.train_data_prefix,
device=self.torch_device
)
self.val_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
elif stage == 'val':
self.val_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
else:
raise NotImplementedError
def train_dataloader(self):
return get_dataloader(self.train_dataset, self.batch_size, collate_fn=collate_with_fragment_edges, shuffle=True)
def val_dataloader(self):
return get_dataloader(self.val_dataset, self.batch_size, collate_fn=collate_with_fragment_edges)
def test_dataloader(self):
return get_dataloader(self.test_dataset, self.batch_size, collate_fn=collate_with_fragment_edges)
def forward(self, data):
h = data['one_hot']
x = data['positions']
fragment_mask = data['fragment_mask']
linker_mask = data['linker_mask']
edge_mask = data['edge_mask']
edges = data['edges']
# Considering only fragments
x = x * fragment_mask
h = h * fragment_mask
# Reshaping
bs, n_nodes = x.shape[0], x.shape[1]
fragment_mask = fragment_mask.view(bs * n_nodes, 1)
x = x.view(bs * n_nodes, -1)
h = h.view(bs * n_nodes, -1)
# Prediction
distances, _ = coord2diff(x, edges)
distance_edge_mask = (edge_mask.bool() & (distances < 6)).long()
output = self.gnn.forward(h, edges, distances, fragment_mask, distance_edge_mask)
output = output.view(bs, n_nodes, -1).mean(1)
output = sigmoid(output)
true = self.get_true_labels(linker_mask)
loss = self.ordinal_loss(output, true)
return output, loss
def ordinal_loss(self, pred, true):
target = torch.zeros_like(pred, device=self.torch_device)
for i, label in enumerate(true):
target[i, 0:label + 1] = 1
return mse_loss(pred, target, reduction='none').sum(1).mean()
def get_true_labels(self, linker_mask):
labels = []
sizes = linker_mask.squeeze().sum(-1).long().detach().cpu().numpy()
for size in sizes:
label = self.linker_size2id.get(size)
if label is None:
label = self.linker_size2id[max(self.linker_id2size)]
labels.append(label)
labels = torch.tensor(labels, device=linker_mask.device, dtype=torch.long)
return labels
@staticmethod
def prediction2label(pred):
return torch.cumprod(pred > 0.5, dim=1).sum(dim=1) - 1
def training_step(self, data, *args):
_, loss = self.forward(data)
return {'loss': loss}
def validation_step(self, data, *args):
_, loss = self.forward(data)
return {'loss': loss}
def test_step(self, data, *args):
loss = self.forward(data)
return {'loss': loss}
def training_epoch_end(self, training_step_outputs):
for metric in training_step_outputs[0].keys():
avg_metric = self.aggregate_metric(training_step_outputs, metric)
self.metrics.setdefault(f'{metric}/train', []).append(avg_metric)
self.log(f'{metric}/train', avg_metric, prog_bar=True)
def validation_epoch_end(self, validation_step_outputs):
for metric in validation_step_outputs[0].keys():
avg_metric = self.aggregate_metric(validation_step_outputs, metric)
self.metrics.setdefault(f'{metric}/val', []).append(avg_metric)
self.log(f'{metric}/val', avg_metric, prog_bar=True)
correct = 0
total = 0
for data in self.val_dataloader():
output, _ = self.forward(data)
pred = self.prediction2label(output)
true = self.get_true_labels(data['linker_mask'])
correct += (pred == true).sum()
total += len(pred)
accuracy = correct / total
self.metrics.setdefault(f'accuracy/val', []).append(accuracy)
self.log(f'accuracy/val', accuracy, prog_bar=True)
def configure_optimizers(self):
return torch.optim.AdamW(self.gnn.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12)
@staticmethod
def aggregate_metric(step_outputs, metric):
return torch.tensor([out[metric] for out in step_outputs]).mean()
class SizeRegressor(pl.LightningModule):
train_dataset = None
val_dataset = None
test_dataset = None
metrics: Dict[str, List[float]] = {}
def __init__(
self, data_path, train_data_prefix, val_data_prefix,
in_node_nf, hidden_nf, n_layers, batch_size, lr, torch_device,
normalization=None, task='regression',
):
super(SizeRegressor, self).__init__()
self.save_hyperparameters()
self.data_path = data_path
self.train_data_prefix = train_data_prefix
self.val_data_prefix = val_data_prefix
self.batch_size = batch_size
self.lr = lr
self.torch_device = torch_device
self.gnn = SizeGNN(
in_node_nf=in_node_nf,
hidden_nf=hidden_nf,
out_node_nf=1,
n_layers=n_layers,
device=torch_device,
normalization=normalization,
)
def setup(self, stage: Optional[str] = None):
if stage == 'fit':
self.train_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.train_data_prefix,
device=self.torch_device
)
self.val_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
elif stage == 'val':
self.val_dataset = ZincDataset(
data_path=self.data_path,
prefix=self.val_data_prefix,
device=self.torch_device
)
else:
raise NotImplementedError
def train_dataloader(self):
return get_dataloader(self.train_dataset, self.batch_size, collate_fn=collate_with_fragment_edges, shuffle=True)
def val_dataloader(self):
return get_dataloader(self.val_dataset, self.batch_size, collate_fn=collate_with_fragment_edges)
def test_dataloader(self):
return get_dataloader(self.test_dataset, self.batch_size, collate_fn=collate_with_fragment_edges)
def forward(self, data):
h = data['one_hot']
x = data['positions']
fragment_mask = data['fragment_mask']
linker_mask = data['linker_mask']
edge_mask = data['edge_mask']
edges = data['edges']
# Considering only fragments
x = x * fragment_mask
h = h * fragment_mask
# Reshaping
bs, n_nodes = x.shape[0], x.shape[1]
fragment_mask = fragment_mask.view(bs * n_nodes, 1)
x = x.view(bs * n_nodes, -1)
h = h.view(bs * n_nodes, -1)
# Prediction
distances, _ = coord2diff(x, edges)
distance_edge_mask = (edge_mask.bool() & (distances < 6)).long()
output = self.gnn.forward(h, edges, distances, fragment_mask, distance_edge_mask)
output = output.view(bs, n_nodes, -1).mean(1).squeeze()
true = linker_mask.squeeze().sum(-1).float()
loss = mse_loss(output, true)
return output, loss
def training_step(self, data, *args):
_, loss = self.forward(data)
return {'loss': loss}
def validation_step(self, data, *args):
_, loss = self.forward(data)
return {'loss': loss}
def test_step(self, data, *args):
loss = self.forward(data)
return {'loss': loss}
def training_epoch_end(self, training_step_outputs):
for metric in training_step_outputs[0].keys():
avg_metric = self.aggregate_metric(training_step_outputs, metric)
self.metrics.setdefault(f'{metric}/train', []).append(avg_metric)
self.log(f'{metric}/train', avg_metric, prog_bar=True)
def validation_epoch_end(self, validation_step_outputs):
for metric in validation_step_outputs[0].keys():
avg_metric = self.aggregate_metric(validation_step_outputs, metric)
self.metrics.setdefault(f'{metric}/val', []).append(avg_metric)
self.log(f'{metric}/val', avg_metric, prog_bar=True)
correct = 0
total = 0
for data in self.val_dataloader():
output, _ = self.forward(data)
pred = torch.round(output).long()
true = data['linker_mask'].squeeze().sum(-1).long()
correct += (pred == true).sum()
total += len(pred)
accuracy = correct / total
self.metrics.setdefault(f'accuracy/val', []).append(accuracy)
self.log(f'accuracy/val', accuracy, prog_bar=True)
def configure_optimizers(self):
return torch.optim.AdamW(self.gnn.parameters(), lr=self.lr, amsgrad=True, weight_decay=1e-12)
@staticmethod
def aggregate_metric(step_outputs, metric):
return torch.tensor([out[metric] for out in step_outputs]).mean()
|