Spaces:
Sleeping
Sleeping
import math | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from src import utils | |
from pdb import set_trace | |
class GCL(nn.Module): | |
def __init__(self, input_nf, output_nf, hidden_nf, normalization_factor, aggregation_method, activation, | |
edges_in_d=0, nodes_att_dim=0, attention=False, normalization=None): | |
super(GCL, self).__init__() | |
input_edge = input_nf * 2 | |
self.normalization_factor = normalization_factor | |
self.aggregation_method = aggregation_method | |
self.attention = attention | |
self.edge_mlp = nn.Sequential( | |
nn.Linear(input_edge + edges_in_d, hidden_nf), | |
activation, | |
nn.Linear(hidden_nf, hidden_nf), | |
activation) | |
if normalization is None: | |
self.node_mlp = nn.Sequential( | |
nn.Linear(hidden_nf + input_nf + nodes_att_dim, hidden_nf), | |
activation, | |
nn.Linear(hidden_nf, output_nf) | |
) | |
elif normalization == 'batch_norm': | |
self.node_mlp = nn.Sequential( | |
nn.Linear(hidden_nf + input_nf + nodes_att_dim, hidden_nf), | |
nn.BatchNorm1d(hidden_nf), | |
activation, | |
nn.Linear(hidden_nf, output_nf), | |
nn.BatchNorm1d(output_nf), | |
) | |
else: | |
raise NotImplementedError | |
if self.attention: | |
self.att_mlp = nn.Sequential(nn.Linear(hidden_nf, 1), nn.Sigmoid()) | |
def edge_model(self, source, target, edge_attr, edge_mask): | |
if edge_attr is None: # Unused. | |
out = torch.cat([source, target], dim=1) | |
else: | |
out = torch.cat([source, target, edge_attr], dim=1) | |
mij = self.edge_mlp(out) | |
if self.attention: | |
att_val = self.att_mlp(mij) | |
out = mij * att_val | |
else: | |
out = mij | |
if edge_mask is not None: | |
out = out * edge_mask | |
return out, mij | |
def node_model(self, x, edge_index, edge_attr, node_attr): | |
row, col = edge_index | |
agg = unsorted_segment_sum(edge_attr, row, num_segments=x.size(0), | |
normalization_factor=self.normalization_factor, | |
aggregation_method=self.aggregation_method) | |
if node_attr is not None: | |
agg = torch.cat([x, agg, node_attr], dim=1) | |
else: | |
agg = torch.cat([x, agg], dim=1) | |
out = x + self.node_mlp(agg) | |
return out, agg | |
def forward(self, h, edge_index, edge_attr=None, node_attr=None, node_mask=None, edge_mask=None): | |
row, col = edge_index | |
edge_feat, mij = self.edge_model(h[row], h[col], edge_attr, edge_mask) | |
h, agg = self.node_model(h, edge_index, edge_feat, node_attr) | |
if node_mask is not None: | |
h = h * node_mask | |
return h, mij | |
class EquivariantUpdate(nn.Module): | |
def __init__(self, hidden_nf, normalization_factor, aggregation_method, | |
edges_in_d=1, activation=nn.SiLU(), tanh=False, coords_range=10.0): | |
super(EquivariantUpdate, self).__init__() | |
self.tanh = tanh | |
self.coords_range = coords_range | |
input_edge = hidden_nf * 2 + edges_in_d | |
layer = nn.Linear(hidden_nf, 1, bias=False) | |
torch.nn.init.xavier_uniform_(layer.weight, gain=0.001) | |
self.coord_mlp = nn.Sequential( | |
nn.Linear(input_edge, hidden_nf), | |
activation, | |
nn.Linear(hidden_nf, hidden_nf), | |
activation, | |
layer) | |
self.normalization_factor = normalization_factor | |
self.aggregation_method = aggregation_method | |
def coord_model(self, h, coord, edge_index, coord_diff, edge_attr, edge_mask, linker_mask): | |
row, col = edge_index | |
input_tensor = torch.cat([h[row], h[col], edge_attr], dim=1) | |
if self.tanh: | |
trans = coord_diff * torch.tanh(self.coord_mlp(input_tensor)) * self.coords_range | |
else: | |
trans = coord_diff * self.coord_mlp(input_tensor) | |
if edge_mask is not None: | |
trans = trans * edge_mask | |
agg = unsorted_segment_sum(trans, row, num_segments=coord.size(0), | |
normalization_factor=self.normalization_factor, | |
aggregation_method=self.aggregation_method) | |
if linker_mask is not None: | |
agg = agg * linker_mask | |
coord = coord + agg | |
return coord | |
def forward( | |
self, h, coord, edge_index, coord_diff, edge_attr=None, linker_mask=None, node_mask=None, edge_mask=None | |
): | |
coord = self.coord_model(h, coord, edge_index, coord_diff, edge_attr, edge_mask, linker_mask) | |
if node_mask is not None: | |
coord = coord * node_mask | |
return coord | |
class EquivariantBlock(nn.Module): | |
def __init__(self, hidden_nf, edge_feat_nf=2, device='cpu', activation=nn.SiLU(), n_layers=2, attention=True, | |
norm_diff=True, tanh=False, coords_range=15, norm_constant=1, sin_embedding=None, | |
normalization_factor=100, aggregation_method='sum'): | |
super(EquivariantBlock, self).__init__() | |
self.hidden_nf = hidden_nf | |
self.device = device | |
self.n_layers = n_layers | |
self.coords_range_layer = float(coords_range) | |
self.norm_diff = norm_diff | |
self.norm_constant = norm_constant | |
self.sin_embedding = sin_embedding | |
self.normalization_factor = normalization_factor | |
self.aggregation_method = aggregation_method | |
for i in range(0, n_layers): | |
self.add_module("gcl_%d" % i, GCL(self.hidden_nf, self.hidden_nf, self.hidden_nf, edges_in_d=edge_feat_nf, | |
activation=activation, attention=attention, | |
normalization_factor=self.normalization_factor, | |
aggregation_method=self.aggregation_method)) | |
self.add_module("gcl_equiv", EquivariantUpdate(hidden_nf, edges_in_d=edge_feat_nf, activation=activation, tanh=tanh, | |
coords_range=self.coords_range_layer, | |
normalization_factor=self.normalization_factor, | |
aggregation_method=self.aggregation_method)) | |
self.to(self.device) | |
def forward(self, h, x, edge_index, node_mask=None, linker_mask=None, edge_mask=None, edge_attr=None): | |
# Edit Emiel: Remove velocity as input | |
distances, coord_diff = coord2diff(x, edge_index, self.norm_constant) | |
if self.sin_embedding is not None: | |
distances = self.sin_embedding(distances) | |
edge_attr = torch.cat([distances, edge_attr], dim=1) | |
for i in range(0, self.n_layers): | |
h, _ = self._modules["gcl_%d" % i](h, edge_index, edge_attr=edge_attr, node_mask=node_mask, edge_mask=edge_mask) | |
x = self._modules["gcl_equiv"]( | |
h, x, | |
edge_index=edge_index, | |
coord_diff=coord_diff, | |
edge_attr=edge_attr, | |
linker_mask=linker_mask, | |
node_mask=node_mask, | |
edge_mask=edge_mask, | |
) | |
# Important, the bias of the last linear might be non-zero | |
if node_mask is not None: | |
h = h * node_mask | |
return h, x | |
class EGNN(nn.Module): | |
def __init__(self, in_node_nf, in_edge_nf, hidden_nf, device='cpu', activation=nn.SiLU(), n_layers=3, attention=False, | |
norm_diff=True, out_node_nf=None, tanh=False, coords_range=15, norm_constant=1, inv_sublayers=2, | |
sin_embedding=False, normalization_factor=100, aggregation_method='sum'): | |
super(EGNN, self).__init__() | |
if out_node_nf is None: | |
out_node_nf = in_node_nf | |
self.hidden_nf = hidden_nf | |
self.device = device | |
self.n_layers = n_layers | |
self.coords_range_layer = float(coords_range/n_layers) | |
self.norm_diff = norm_diff | |
self.normalization_factor = normalization_factor | |
self.aggregation_method = aggregation_method | |
if sin_embedding: | |
self.sin_embedding = SinusoidsEmbeddingNew() | |
edge_feat_nf = self.sin_embedding.dim * 2 | |
else: | |
self.sin_embedding = None | |
edge_feat_nf = 2 | |
self.embedding = nn.Linear(in_node_nf, self.hidden_nf) | |
self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf) | |
for i in range(0, n_layers): | |
self.add_module("e_block_%d" % i, EquivariantBlock(hidden_nf, edge_feat_nf=edge_feat_nf, device=device, | |
activation=activation, n_layers=inv_sublayers, | |
attention=attention, norm_diff=norm_diff, tanh=tanh, | |
coords_range=coords_range, norm_constant=norm_constant, | |
sin_embedding=self.sin_embedding, | |
normalization_factor=self.normalization_factor, | |
aggregation_method=self.aggregation_method)) | |
self.to(self.device) | |
def forward(self, h, x, edge_index, node_mask=None, linker_mask=None, edge_mask=None): | |
# Edit Emiel: Remove velocity as input | |
distances, _ = coord2diff(x, edge_index) | |
if self.sin_embedding is not None: | |
distances = self.sin_embedding(distances) | |
h = self.embedding(h) | |
for i in range(0, self.n_layers): | |
h, x = self._modules["e_block_%d" % i]( | |
h, x, edge_index, | |
node_mask=node_mask, | |
linker_mask=linker_mask, | |
edge_mask=edge_mask, | |
edge_attr=distances | |
) | |
# Important, the bias of the last linear might be non-zero | |
h = self.embedding_out(h) | |
if node_mask is not None: | |
h = h * node_mask | |
return h, x | |
class GNN(nn.Module): | |
def __init__(self, in_node_nf, in_edge_nf, hidden_nf, aggregation_method='sum', device='cpu', | |
activation=nn.SiLU(), n_layers=4, attention=False, normalization_factor=1, | |
out_node_nf=None, normalization=None): | |
super(GNN, self).__init__() | |
if out_node_nf is None: | |
out_node_nf = in_node_nf | |
self.hidden_nf = hidden_nf | |
self.device = device | |
self.n_layers = n_layers | |
# Encoder | |
self.embedding = nn.Linear(in_node_nf, self.hidden_nf) | |
self.embedding_out = nn.Linear(self.hidden_nf, out_node_nf) | |
for i in range(0, n_layers): | |
self.add_module("gcl_%d" % i, GCL( | |
self.hidden_nf, self.hidden_nf, self.hidden_nf, | |
normalization_factor=normalization_factor, | |
aggregation_method=aggregation_method, | |
edges_in_d=in_edge_nf, activation=activation, | |
attention=attention, normalization=normalization)) | |
self.to(self.device) | |
def forward(self, h, edges, edge_attr=None, node_mask=None, edge_mask=None): | |
# Edit Emiel: Remove velocity as input | |
h = self.embedding(h) | |
for i in range(0, self.n_layers): | |
h, _ = self._modules["gcl_%d" % i](h, edges, edge_attr=edge_attr, node_mask=node_mask, edge_mask=edge_mask) | |
h = self.embedding_out(h) | |
# Important, the bias of the last linear might be non-zero | |
if node_mask is not None: | |
h = h * node_mask | |
return h | |
class SinusoidsEmbeddingNew(nn.Module): | |
def __init__(self, max_res=15., min_res=15. / 2000., div_factor=4): | |
super().__init__() | |
self.n_frequencies = int(math.log(max_res / min_res, div_factor)) + 1 | |
self.frequencies = 2 * math.pi * div_factor ** torch.arange(self.n_frequencies)/max_res | |
self.dim = len(self.frequencies) * 2 | |
def forward(self, x): | |
x = torch.sqrt(x + 1e-8) | |
emb = x * self.frequencies[None, :].to(x.device) | |
emb = torch.cat((emb.sin(), emb.cos()), dim=-1) | |
return emb.detach() | |
def coord2diff(x, edge_index, norm_constant=1): | |
row, col = edge_index | |
coord_diff = x[row] - x[col] | |
radial = torch.sum((coord_diff) ** 2, 1).unsqueeze(1) | |
norm = torch.sqrt(radial + 1e-8) | |
coord_diff = coord_diff/(norm + norm_constant) | |
return radial, coord_diff | |
def unsorted_segment_sum(data, segment_ids, num_segments, normalization_factor, aggregation_method: str): | |
"""Custom PyTorch op to replicate TensorFlow's `unsorted_segment_sum`. | |
Normalization: 'sum' or 'mean'. | |
""" | |
result_shape = (num_segments, data.size(1)) | |
result = data.new_full(result_shape, 0) # Init empty result tensor. | |
segment_ids = segment_ids.unsqueeze(-1).expand(-1, data.size(1)) | |
result.scatter_add_(0, segment_ids, data) | |
if aggregation_method == 'sum': | |
result = result / normalization_factor | |
if aggregation_method == 'mean': | |
norm = data.new_zeros(result.shape) | |
norm.scatter_add_(0, segment_ids, data.new_ones(data.shape)) | |
norm[norm == 0] = 1 | |
result = result / norm | |
return result | |
class Dynamics(nn.Module): | |
def __init__( | |
self, n_dims, in_node_nf, context_node_nf, hidden_nf=64, device='cpu', activation=nn.SiLU(), | |
n_layers=4, attention=False, condition_time=True, tanh=False, norm_constant=0, inv_sublayers=2, | |
sin_embedding=False, normalization_factor=100, aggregation_method='sum', model='egnn_dynamics', | |
normalization=None, centering=False, | |
): | |
super().__init__() | |
self.device = device | |
self.n_dims = n_dims | |
self.context_node_nf = context_node_nf | |
self.condition_time = condition_time | |
self.model = model | |
self.centering = centering | |
in_node_nf = in_node_nf + context_node_nf + condition_time | |
if self.model == 'egnn_dynamics': | |
self.dynamics = EGNN( | |
in_node_nf=in_node_nf, | |
in_edge_nf=1, | |
hidden_nf=hidden_nf, device=device, | |
activation=activation, | |
n_layers=n_layers, | |
attention=attention, | |
tanh=tanh, | |
norm_constant=norm_constant, | |
inv_sublayers=inv_sublayers, | |
sin_embedding=sin_embedding, | |
normalization_factor=normalization_factor, | |
aggregation_method=aggregation_method, | |
) | |
elif self.model == 'gnn_dynamics': | |
self.dynamics = GNN( | |
in_node_nf=in_node_nf+3, | |
in_edge_nf=0, | |
hidden_nf=hidden_nf, | |
out_node_nf=in_node_nf+3, | |
device=device, | |
activation=activation, | |
n_layers=n_layers, | |
attention=attention, | |
normalization_factor=normalization_factor, | |
aggregation_method=aggregation_method, | |
normalization=normalization, | |
) | |
else: | |
raise NotImplementedError | |
self.edge_cache = {} | |
def forward(self, t, xh, node_mask, linker_mask, edge_mask, context): | |
""" | |
- t: (B) | |
- xh: (B, N, D), where D = 3 + nf | |
- node_mask: (B, N, 1) | |
- edge_mask: (B*N*N, 1) | |
- context: (B, N, C) | |
""" | |
bs, n_nodes = xh.shape[0], xh.shape[1] | |
edges = self.get_edges(n_nodes, bs) # (2, B*N) | |
node_mask = node_mask.view(bs * n_nodes, 1) # (B*N, 1) | |
if linker_mask is not None: | |
linker_mask = linker_mask.view(bs * n_nodes, 1) # (B*N, 1) | |
# Reshaping node features & adding time feature | |
xh = xh.view(bs * n_nodes, -1).clone() * node_mask # (B*N, D) | |
x = xh[:, :self.n_dims].clone() # (B*N, 3) | |
h = xh[:, self.n_dims:].clone() # (B*N, nf) | |
if self.condition_time: | |
if np.prod(t.size()) == 1: | |
# t is the same for all elements in batch. | |
h_time = torch.empty_like(h[:, 0:1]).fill_(t.item()) | |
else: | |
# t is different over the batch dimension. | |
h_time = t.view(bs, 1).repeat(1, n_nodes) | |
h_time = h_time.view(bs * n_nodes, 1) | |
h = torch.cat([h, h_time], dim=1) # (B*N, nf+1) | |
if context is not None: | |
context = context.view(bs*n_nodes, self.context_node_nf) | |
h = torch.cat([h, context], dim=1) | |
# Forward EGNN | |
# Output: h_final (B*N, nf), x_final (B*N, 3), vel (B*N, 3) | |
if self.model == 'egnn_dynamics': | |
h_final, x_final = self.dynamics( | |
h, | |
x, | |
edges, | |
node_mask=node_mask, | |
linker_mask=linker_mask, | |
edge_mask=edge_mask | |
) | |
vel = (x_final - x) * node_mask # This masking operation is redundant but just in case | |
elif self.model == 'gnn_dynamics': | |
xh = torch.cat([x, h], dim=1) | |
output = self.dynamics(xh, edges, node_mask=node_mask) | |
vel = output[:, 0:3] * node_mask | |
h_final = output[:, 3:] | |
else: | |
raise NotImplementedError | |
# Slice off context size | |
if context is not None: | |
h_final = h_final[:, :-self.context_node_nf] | |
# Slice off last dimension which represented time. | |
if self.condition_time: | |
h_final = h_final[:, :-1] | |
vel = vel.view(bs, n_nodes, -1) # (B, N, 3) | |
h_final = h_final.view(bs, n_nodes, -1) # (B, N, D) | |
node_mask = node_mask.view(bs, n_nodes, 1) # (B, N, 1) | |
if torch.any(torch.isnan(vel)) or torch.any(torch.isnan(h_final)): | |
raise utils.FoundNaNException(vel, h_final) | |
if self.centering: | |
vel = utils.remove_mean_with_mask(vel, node_mask) | |
return torch.cat([vel, h_final], dim=2) | |
def get_edges(self, n_nodes, batch_size): | |
if n_nodes in self.edge_cache: | |
edges_dic_b = self.edge_cache[n_nodes] | |
if batch_size in edges_dic_b: | |
return edges_dic_b[batch_size] | |
else: | |
# get edges for a single sample | |
rows, cols = [], [] | |
for batch_idx in range(batch_size): | |
for i in range(n_nodes): | |
for j in range(n_nodes): | |
rows.append(i + batch_idx * n_nodes) | |
cols.append(j + batch_idx * n_nodes) | |
edges = [torch.LongTensor(rows).to(self.device), torch.LongTensor(cols).to(self.device)] | |
edges_dic_b[batch_size] = edges | |
return edges | |
else: | |
self.edge_cache[n_nodes] = {} | |
return self.get_edges(n_nodes, batch_size) | |
class DynamicsWithPockets(Dynamics): | |
def forward(self, t, xh, node_mask, linker_mask, edge_mask, context): | |
""" | |
- t: (B) | |
- xh: (B, N, D), where D = 3 + nf | |
- node_mask: (B, N, 1) | |
- edge_mask: (B*N*N, 1) | |
- context: (B, N, C) | |
""" | |
bs, n_nodes = xh.shape[0], xh.shape[1] | |
node_mask = node_mask.view(bs * n_nodes, 1) # (B*N, 1) | |
if linker_mask is not None: | |
linker_mask = linker_mask.view(bs * n_nodes, 1) # (B*N, 1) | |
# Reshaping node features & adding time feature | |
xh = xh.view(bs * n_nodes, -1).clone() * node_mask # (B*N, D) | |
x = xh[:, :self.n_dims].clone() # (B*N, 3) | |
h = xh[:, self.n_dims:].clone() # (B*N, nf) | |
edges = self.get_dist_edges(x, node_mask, edge_mask) | |
if self.condition_time: | |
if np.prod(t.size()) == 1: | |
# t is the same for all elements in batch. | |
h_time = torch.empty_like(h[:, 0:1]).fill_(t.item()) | |
else: | |
# t is different over the batch dimension. | |
h_time = t.view(bs, 1).repeat(1, n_nodes) | |
h_time = h_time.view(bs * n_nodes, 1) | |
h = torch.cat([h, h_time], dim=1) # (B*N, nf+1) | |
if context is not None: | |
context = context.view(bs*n_nodes, self.context_node_nf) | |
h = torch.cat([h, context], dim=1) | |
# Forward EGNN | |
# Output: h_final (B*N, nf), x_final (B*N, 3), vel (B*N, 3) | |
if self.model == 'egnn_dynamics': | |
h_final, x_final = self.dynamics( | |
h, | |
x, | |
edges, | |
node_mask=node_mask, | |
linker_mask=linker_mask, | |
edge_mask=None | |
) | |
vel = (x_final - x) * node_mask # This masking operation is redundant but just in case | |
elif self.model == 'gnn_dynamics': | |
xh = torch.cat([x, h], dim=1) | |
output = self.dynamics(xh, edges, node_mask=node_mask) | |
vel = output[:, 0:3] * node_mask | |
h_final = output[:, 3:] | |
else: | |
raise NotImplementedError | |
# Slice off context size | |
if context is not None: | |
h_final = h_final[:, :-self.context_node_nf] | |
# Slice off last dimension which represented time. | |
if self.condition_time: | |
h_final = h_final[:, :-1] | |
vel = vel.view(bs, n_nodes, -1) # (B, N, 3) | |
h_final = h_final.view(bs, n_nodes, -1) # (B, N, D) | |
node_mask = node_mask.view(bs, n_nodes, 1) # (B, N, 1) | |
if torch.any(torch.isnan(vel)) or torch.any(torch.isnan(h_final)): | |
raise utils.FoundNaNException(vel, h_final) | |
if self.centering: | |
vel = utils.remove_mean_with_mask(vel, node_mask) | |
return torch.cat([vel, h_final], dim=2) | |
def get_dist_edges(x, node_mask, batch_mask): | |
node_mask = node_mask.squeeze().bool() | |
batch_adj = (batch_mask[:, None] == batch_mask[None, :]) | |
nodes_adj = (node_mask[:, None] & node_mask[None, :]) | |
dists_adj = (torch.cdist(x, x) <= 4) | |
rm_self_loops = ~torch.eye(x.size(0), dtype=torch.bool, device=x.device) | |
adj = batch_adj & nodes_adj & dists_adj & rm_self_loops | |
edges = torch.stack(torch.where(adj)) | |
return edges | |