import argparse import gradio as gr import numpy as np import os import torch import subprocess import output from rdkit import Chem from src import const from src.visualizer import save_xyz_file from src.datasets import get_dataloader, collate_with_fragment_edges, parse_molecule from src.lightning import DDPM from src.linker_size_lightning import SizeClassifier parser = argparse.ArgumentParser() parser.add_argument('--ip', type=str, default=None) args = parser.parse_args() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") os.makedirs("results", exist_ok=True) os.makedirs("models", exist_ok=True) size_gnn_path = 'models/geom_size_gnn.ckpt' if not os.path.exists(size_gnn_path): print('Downloading SizeGNN model...') link = 'https://zenodo.org/record/7121300/files/geom_size_gnn.ckpt?download=1' subprocess.run(f'wget {link} -O {size_gnn_path}', shell=True) size_nn = SizeClassifier.load_from_checkpoint('models/geom_size_gnn.ckpt', map_location=device).eval().to(device) print('Loaded SizeGNN model') diffusion_path = 'models/geom_difflinker.ckpt' if not os.path.exists(diffusion_path): print('Downloading Diffusion model...') link = 'https://zenodo.org/record/7121300/files/geom_difflinker.ckpt?download=1' subprocess.run(f'wget {link} -O {diffusion_path}', shell=True) ddpm = DDPM.load_from_checkpoint('models/geom_difflinker.ckpt', map_location=device).eval().to(device) print('Loaded diffusion model') def sample_fn(_data): output, _ = size_nn.forward(_data, return_loss=False) probabilities = torch.softmax(output, dim=1) distribution = torch.distributions.Categorical(probs=probabilities) samples = distribution.sample() sizes = [] for label in samples.detach().cpu().numpy(): sizes.append(size_nn.linker_id2size[label]) sizes = torch.tensor(sizes, device=samples.device, dtype=torch.long) return sizes def read_molecule_content(path): with open(path, "r") as f: return "".join(f.readlines()) def read_molecule(path): if path.endswith('.pdb'): return Chem.MolFromPDBFile(path, sanitize=False, removeHs=True) elif path.endswith('.mol'): return Chem.MolFromMolFile(path, sanitize=False, removeHs=True) elif path.endswith('.mol2'): return Chem.MolFromMol2File(path, sanitize=False, removeHs=True) elif path.endswith('.sdf'): return Chem.SDMolSupplier(path, sanitize=False, removeHs=True)[0] raise Exception('Unknown file extension') def show_input(input_file): if input_file is None: return '' path = input_file.name extension = path.split('.')[-1] if extension not in ['sdf', 'pdb', 'mol', 'mol2']: msg = output.INVALID_FORMAT_MSG.format(extension=extension) return output.IFRAME_TEMPLATE.format(html=msg) try: molecule = read_molecule_content(path) except Exception as e: return f'Could not read the molecule: {e}' html = output.HTML_TEMPLATE.format(molecule=molecule, fmt=extension) return output.IFRAME_TEMPLATE.format(html=html) def generate(input_file): if input_file is None: return '' path = input_file.name extension = path.split('.')[-1] if extension not in ['sdf', 'pdb', 'mol', 'mol2']: msg = output.INVALID_FORMAT_MSG.format(extension=extension) return output.IFRAME_TEMPLATE.format(html=msg) try: molecule = read_molecule(path) molecule = Chem.RemoveAllHs(molecule) name = '.'.join(path.split('/')[-1].split('.')[:-1]) inp_sdf = f'results/{name}_input.sdf' inp_xyz = f'results/{name}_input.xyz' out_sdf = f'results/{name}_output.sdf' out_xyz = f'results/{name}_output.xyz' except Exception as e: return f'Could not read the molecule: {e}' if molecule.GetNumAtoms() > 50: return f'Too large molecule: upper limit is 50 heavy atoms' with Chem.SDWriter(inp_sdf) as w: w.write(molecule) Chem.MolToXYZFile(molecule, inp_xyz) positions, one_hot, charges = parse_molecule(molecule, is_geom=True) anchors = np.zeros_like(charges) fragment_mask = np.ones_like(charges) linker_mask = np.zeros_like(charges) print('Read and parsed molecule') dataset = [{ 'uuid': '0', 'name': '0', 'positions': torch.tensor(positions, dtype=const.TORCH_FLOAT, device=device), 'one_hot': torch.tensor(one_hot, dtype=const.TORCH_FLOAT, device=device), 'charges': torch.tensor(charges, dtype=const.TORCH_FLOAT, device=device), 'anchors': torch.tensor(anchors, dtype=const.TORCH_FLOAT, device=device), 'fragment_mask': torch.tensor(fragment_mask, dtype=const.TORCH_FLOAT, device=device), 'linker_mask': torch.tensor(linker_mask, dtype=const.TORCH_FLOAT, device=device), 'num_atoms': len(positions), }] dataloader = get_dataloader(dataset, batch_size=1, collate_fn=collate_with_fragment_edges) print('Created dataloader') for data in dataloader: chain, node_mask = ddpm.sample_chain(data, sample_fn=sample_fn, keep_frames=1) print('Generated linker') x = chain[0][:, :, :ddpm.n_dims] h = chain[0][:, :, ddpm.n_dims:] save_xyz_file('results', h, x, node_mask, names=[name], is_geom=True, suffix='output') print('Saved XYZ file') subprocess.run(f'obabel {out_xyz} -O {out_sdf}', shell=True) print('Converted to SDF') break generated_molecule = read_molecule_content(out_sdf) html = output.HTML_TEMPLATE.format(molecule=generated_molecule, fmt='sdf') return [ output.IFRAME_TEMPLATE.format(html=html), [inp_sdf, inp_xyz, out_sdf, out_xyz], ] demo = gr.Blocks() with demo: gr.Markdown('# DiffLinker: Equivariant 3D-Conditional Diffusion Model for Molecular Linker Design') with gr.Box(): with gr.Row(): with gr.Column(): gr.Markdown('## Input Fragments') gr.Markdown('Upload the file with 3D-coordinates of the input fragments in .pdb, .mol2 or .sdf format:') input_file = gr.File(file_count='single', label='Input Fragments') gr.Examples( examples=['examples/example_1.sdf', 'examples/example_2.sdf'], inputs=input_file, ) button = gr.Button('Generate Linker!') gr.Markdown('') gr.Markdown('## Output Files') gr.Markdown('Download files with the generated molecules here:') output_files = gr.File(file_count='multiple', label='Output Files') with gr.Column(): visualization = gr.HTML() input_file.change( fn=show_input, inputs=[input_file], outputs=[visualization], ) button.click( fn=generate, inputs=[input_file], outputs=[visualization, output_files], ) demo.launch(server_name=args.ip)