arjunanand13 commited on
Commit
cc97b49
·
verified ·
1 Parent(s): b63b694

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -0
app.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import torch
3
+ from PIL import Image
4
+ from transformers import AutoModelForCausalLM, AutoProcessor
5
+ import torch
6
+ import gradio as gr
7
+
8
+ # Load the model and processor
9
+ model_name = "arjunanand13/Florence-enphase"
10
+
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ print(device)
13
+ model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
14
+
15
+ processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
16
+ torch.cuda.empty_cache()
17
+
18
+
19
+ def predict(image, question):
20
+
21
+ encoding = processor(image, question, return_tensors="pt")
22
+
23
+ with torch.no_grad():
24
+ outputs = model.generate(**encoding, max_length=256)
25
+ answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
26
+ return answer
27
+
28
+ def gradio_interface(image, question):
29
+
30
+ if image.mode != "RGB":
31
+ image = image.convert("RGB")
32
+
33
+ answer = predict(image, question)
34
+ return answer
35
+
36
+ iface = gr.Interface(
37
+ fn=gradio_interface,
38
+ inputs=[
39
+ gr.Image(type="pil", label="Upload Image"),
40
+ gr.Textbox(label="Enter your question")
41
+ ],
42
+ outputs=gr.Textbox(label="Answer"),
43
+ title="Florence-enphase Leg lift classifier",
44
+ description="Upload an image and ask a question about it."
45
+ )
46
+
47
+
48
+ iface.launch()