Spaces:
Sleeping
Sleeping
arjunanand13
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from PIL import Image
|
4 |
+
from transformers import AutoModelForCausalLM, AutoProcessor
|
5 |
+
import torch
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
# Load the model and processor
|
9 |
+
model_name = "arjunanand13/Florence-enphase"
|
10 |
+
|
11 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
12 |
+
print(device)
|
13 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device)
|
14 |
+
|
15 |
+
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
16 |
+
torch.cuda.empty_cache()
|
17 |
+
|
18 |
+
|
19 |
+
def predict(image, question):
|
20 |
+
|
21 |
+
encoding = processor(image, question, return_tensors="pt")
|
22 |
+
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model.generate(**encoding, max_length=256)
|
25 |
+
answer = processor.batch_decode(outputs, skip_special_tokens=True)[0]
|
26 |
+
return answer
|
27 |
+
|
28 |
+
def gradio_interface(image, question):
|
29 |
+
|
30 |
+
if image.mode != "RGB":
|
31 |
+
image = image.convert("RGB")
|
32 |
+
|
33 |
+
answer = predict(image, question)
|
34 |
+
return answer
|
35 |
+
|
36 |
+
iface = gr.Interface(
|
37 |
+
fn=gradio_interface,
|
38 |
+
inputs=[
|
39 |
+
gr.Image(type="pil", label="Upload Image"),
|
40 |
+
gr.Textbox(label="Enter your question")
|
41 |
+
],
|
42 |
+
outputs=gr.Textbox(label="Answer"),
|
43 |
+
title="Florence-enphase Leg lift classifier",
|
44 |
+
description="Upload an image and ask a question about it."
|
45 |
+
)
|
46 |
+
|
47 |
+
|
48 |
+
iface.launch()
|