import os import torch from PIL import Image from transformers import AutoModelForCausalLM, AutoProcessor import torch import gradio as gr # model_name = "arjunanand13/Florence-enphase2" model_name = "arjunanand13/florence-enphaseall2-30e" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using device: {device}") model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True).to(device) processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True) torch.cuda.empty_cache() DEFAULT_PROMPT = ("You are a Leg Lift Classifier. There is an image of a throughput component " "and we need to identify if the leg is inserted in the hole or not. Return 'True' " "if any leg is not completely seated in the hole; return 'False' if the leg is inserted " "in the hole. Return only the required JSON in this format: {Leg_lift: , Reason: }.") def predict(image, question): if not isinstance(image, Image.Image): raise ValueError(f"Expected image to be PIL.Image, but got {type(image)}") encoding = processor(images=image, text=question, return_tensors="pt").to(device) with torch.no_grad(): outputs = model.generate(**encoding, max_length=256) answer = processor.batch_decode(outputs, skip_special_tokens=True)[0] return answer def gradio_interface(image, question): if image.mode != "RGB": image = image.convert("RGB") answer = predict(image, question) return answer iface = gr.Interface( fn=gradio_interface, inputs=[ gr.Image(type="pil", label="Upload Image"), # Ensures image is passed as a PIL object gr.Textbox(label="Enter your question or edit the default prompt", lines=6, value=DEFAULT_PROMPT) # Default prompt pre-filled and editable ], outputs=gr.Textbox(label="Answer"), title="Florence-enphase Leg Lift Classifier", description=("Upload an image and ask a question about the leg lift. The model will classify whether " "the leg is inserted in the hole or not based on the image. You can edit the default prompt if needed.") ) iface.launch(debug=True)