pashto-asr-v3 / app.py
ihanif's picture
Use ihanif/whisper-small-tunning-v2
f944087 verified
import torch
import gradio as gr
import pytube as pt
from transformers import pipeline
from huggingface_hub import model_info
#from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
# MODEL_NAME = "ihanif/pashto-asr-v3"
MODEL_NAME = "ihanif/whisper-small-tunning-v2" #"ihanif/pashto-asr-v5"
lang = "ps"
#load pre-trained model and tokenizer
#processor = Wav2Vec2Processor.from_pretrained(MODEL_NAME)
#model = Wav2Vec2ForCTC.from_pretrained(MODEL_NAME)
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
#chunk_length_s=30,
device=device,
)
#pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
def transcribe(microphone, file_upload):
warn_output = ""
# if (microphone is not None) and (file_upload is not None):
# warn_output = (
# "WARNING: You've uploaded an audio file and used the microphone. "
# "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
# )
# elif (microphone is None) and (file_upload is None):
# return "ERROR: You have to either use the microphone or upload an audio file"
if (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
#transcription = wav2vec_model(audio)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
yt = pt.YouTube(yt_url)
html_embed_str = _return_yt_html_embed(yt_url)
stream = yt.streams.filter(only_audio=True)[0]
stream.download(filename="audio.mp3")
text = pipe("audio.mp3")["text"]
return html_embed_str, text
demo = gr.Blocks()
examples=[["example-1.wav", "example-1.wav"],["example-2.wav", "example-2.wav"]]
# examples=["example-1.wav"]
mf_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.inputs.Audio(source="microphone", type="filepath", optional=True),
gr.inputs.Audio(source="upload", type="filepath", optional=True),
],
outputs="text",
layout="horizontal",
theme="huggingface",
title="(Pashto ASR) د پښتو اتوماتیک وینا پیژندنه",
description=(
"</p> تاسو کولی شئ یو آډیو فایل اپلوډ کړئ یا په خپل وسیله مایکروفون وکاروئ. مهرباني وکړئ ډاډ ترلاسه کړئ چې تاسو اجازه ورکړې ده<p>"
),
#allow_flagging="never",
flagging_options=["Transcription is not in Pashto", "Transcription is wrong"],
examples=examples,
)
mf_transcribe.launch()
#with demo:
# gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
#demo.launch(enable_queue=False)