from transformers import pipeline, set_seed from transformers import BioGptTokenizer, BioGptForCausalLM model = BioGptForCausalLM.from_pretrained("microsoft/biogpt") tokenizer = BioGptTokenizer.from_pretrained("microsoft/biogpt") generator = pipeline('text-generation', model=model, tokenizer=tokenizer) set_seed(42) generator("COVID-19 is", max_length=20, num_return_sequences=5, do_sample=True) """ import gradio as gr from huggingface_hub import InferenceClient # client = InferenceClient("ruslanmv/Medical-Llama3-8B") client = InferenceClient("microsoft/BioGPT-Large-PubMedQA") # client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3") # cemilcelik/distilgpt2_pubmed # microsoft/biogpt # microsoft/BioGPT-Large # BioGPT-Large-PubMedQA # basic "mistralai/Mistral-7B-Instruct-v0.3" def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a medical chatbot that helps doctors and pathologists with pathological issues. Be concise and answer the questions with given information.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch() """