Spaces:
Running
Running
<html lang="en"> | |
<head> | |
<meta charset="UTF-8"> | |
<title>Object Detection - Hugging Face Transformers.js</title> | |
<script type="module"> | |
// Import the library | |
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@xenova/[email protected]'; | |
// Make it available globally | |
window.pipeline = pipeline; | |
</script> | |
<link href="https://cdn.jsdelivr.net/npm/[email protected]/dist/css/bootstrap.min.css" rel="stylesheet"> | |
<link rel="stylesheet" href="css/styles.css"> | |
</head> | |
<body> | |
<div class="container-main"> | |
<!-- Page Header --> | |
<div class="header"> | |
<div class="header-logo"> | |
<img src="images/logo.png" alt="logo"> | |
</div> | |
<div class="header-main-text"> | |
<h1>Hugging Face Transformers.js</h1> | |
</div> | |
<div class="header-sub-text"> | |
<h3>Free AI Models for JavaScript Web Development</h3> | |
</div> | |
</div> | |
<hr> <!-- Separator --> | |
<!-- Back to Home button --> | |
<div class="row mt-5"> | |
<div class="col-md-12 text-center"> | |
<a href="index.html" class="btn btn-outline-secondary" | |
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a> | |
</div> | |
</div> | |
<!-- Content --> | |
<div class="container mt-5"> | |
<!-- Centered Titles --> | |
<div class="text-center"> | |
<h2>Computer Vision</h2> | |
<h4>Object Detection</h4> | |
</div> | |
<!-- Actual Content of this page --> | |
<div id="object-detection-container" class="container mt-4"> | |
<h5>Run Object Detection with facebook/detr-resnet-50:</h5> | |
<div class="d-flex align-items-center"> | |
<label for="objectDetectionURLText" class="mb-0 text-nowrap" style="margin-right: 15px;">Enter | |
image URL:</label> | |
<input type="text" class="form-control flex-grow-1" id="objectDetectionURLText" | |
value="https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/cats.jpg" | |
placeholder="Enter image" style="margin-right: 15px; margin-left: 15px;"> | |
<button id="DetectButton" class="btn btn-primary" onclick="detectImage()">Detect</button> | |
</div> | |
<div class="mt-4"> | |
<h4>Output:</h4> | |
<pre id="outputArea"></pre> | |
</div> | |
</div> | |
<hr> <!-- Line Separator --> | |
<div id="object-detection-local-container" class="container mt-4"> | |
<h5>Detect a Local Image:</h5> | |
<div class="d-flex align-items-center"> | |
<label for="objectDetectionLocalFile" class="mb-0 text-nowrap" | |
style="margin-right: 15px;">Select Local Image:</label> | |
<input type="file" id="objectDetectionLocalFile" accept="image/*" /> | |
<button id="DetectButtonLocal" class="btn btn-primary" | |
onclick="detectImageLocal()">Detect</button> | |
</div> | |
<div class="mt-4"> | |
<h4>Output:</h4> | |
<pre id="outputAreaLocal"></pre> | |
</div> | |
</div> | |
<!-- Back to Home button --> | |
<div class="row mt-5"> | |
<div class="col-md-12 text-center"> | |
<a href="index.html" class="btn btn-outline-secondary" | |
style="color: #3c650b; border-color: #3c650b;">Back to Main Page</a> | |
</div> | |
</div> | |
</div> | |
</div> | |
<script> | |
let detector; | |
// Initialize the sentiment analysis model | |
async function initializeModel() { | |
detector = await pipeline('object-detection', 'Xenova/detr-resnet-50'); | |
} | |
async function detectImage() { | |
const textFieldValue = document.getElementById("objectDetectionURLText").value.trim(); | |
const result = await detector(textFieldValue, { threshold: 0.9 }); | |
document.getElementById("outputArea").innerText = JSON.stringify(result, null, 2); | |
} | |
async function detectImageLocal() { | |
const fileInput = document.getElementById("objectDetectionLocalFile"); | |
const file = fileInput.files[0]; | |
if (!file) { | |
alert('Please select an image file first.'); | |
return; | |
} | |
// Create a Blob URL from the file | |
const url = URL.createObjectURL(file); | |
const result = await detector(url, { threshold: 0.9 }); | |
document.getElementById("outputAreaLocal").innerText = JSON.stringify(result, null, 2); | |
} | |
// Initialize the model after the DOM is completely loaded | |
window.addEventListener("DOMContentLoaded", initializeModel); | |
</script> | |
</body> | |
</html> |