ilhamsyahids commited on
Commit
6a4c78f
·
verified ·
1 Parent(s): 9b05b64

add aya model

Browse files

Signed-off-by: Ilham Syahid S <[email protected]>

Files changed (3) hide show
  1. README.md +5 -5
  2. app.py +128 -0
  3. requirements.txt +3 -0
README.md CHANGED
@@ -1,12 +1,12 @@
1
  ---
2
  title: CohereAya
3
- emoji: 👀
4
- colorFrom: green
5
- colorTo: green
6
  sdk: streamlit
7
  sdk_version: 1.31.1
8
  app_file: app.py
9
  pinned: false
10
- ---
11
 
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
  title: CohereAya
3
+ emoji: 💬
4
+ colorFrom: blue
5
+ colorTo: yellow
6
  sdk: streamlit
7
  sdk_version: 1.31.1
8
  app_file: app.py
9
  pinned: false
10
+ license: openrail
11
 
12
+ ---
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline
3
+
4
+ def main():
5
+ st.set_page_config(page_title="LinguaSphere: Aya by CohereAI", layout="wide")
6
+
7
+ st.title("LinguaSphere: Aya by CohereAI")
8
+
9
+ # Load translation model and tokenizer
10
+ translation_checkpoint = "CohereForAI/aya-101"
11
+ translation_tokenizer = AutoTokenizer.from_pretrained(translation_checkpoint)
12
+ translation_model = AutoModelForSeq2SeqLM.from_pretrained(translation_checkpoint)
13
+
14
+ # Load sentiment analysis model
15
+ sentiment_analysis_pipeline = pipeline("sentiment-analysis", model="CohereForAI/aya-101")
16
+
17
+ # Load named entity recognition (NER) model
18
+ ner_pipeline = pipeline("ner", model="CohereForAI/aya-101")
19
+
20
+ # Load summarization model
21
+ summarization_pipeline = pipeline("summarization", model="CohereForAI/aya-101")
22
+
23
+ # Sidebar options
24
+ st.sidebar.title("Options")
25
+ show_model_info = st.sidebar.checkbox("Show Model Information")
26
+ show_task_description = st.sidebar.checkbox("Show Task Description")
27
+ show_about = st.sidebar.checkbox("About")
28
+
29
+ if show_about:
30
+ st.sidebar.subheader("About")
31
+ st.sidebar.markdown(
32
+ "LinguaSphere is a Streamlit app powered by Aya, a multilingual model developed by CohereAI."
33
+ )
34
+
35
+ if show_model_info:
36
+ st.sidebar.subheader("Model Information")
37
+ st.sidebar.markdown(
38
+ """
39
+ The Aya model is a massively multilingual generative language model developed by Cohere For AI.
40
+ It is capable of performing various natural language processing tasks such as translation, sentiment analysis,
41
+ named entity recognition, and summarization.
42
+ """
43
+ )
44
+
45
+ if show_task_description:
46
+ st.sidebar.subheader("Task Descriptions")
47
+ st.sidebar.markdown(
48
+ """
49
+ - **Translation:** Translate text from one language to another.
50
+ - **Text Generation:** Generate text based on a prompt.
51
+ - **Sentiment Analysis:** Analyze the sentiment of text.
52
+ - **Named Entity Recognition:** Identify named entities in text.
53
+ - **Summarization:** Generate a summary of text.
54
+ """
55
+ )
56
+
57
+ task = st.selectbox(
58
+ "Select Task",
59
+ [
60
+ "Translation",
61
+ "Text Generation",
62
+ "Sentiment Analysis",
63
+ "Named Entity Recognition",
64
+ "Summarization",
65
+ ],
66
+ )
67
+
68
+ if task == "Translation":
69
+ source_language = st.selectbox(
70
+ "Source Language", ["English", "Turkish", "Hindi"]
71
+ )
72
+ target_language = st.selectbox(
73
+ "Target Language", ["Nepali", "Turkish", "English"]
74
+ )
75
+ source_text = st.text_area("Enter text in " + source_language, "")
76
+
77
+ if st.button("Translate"):
78
+ source_text = source_text.strip()
79
+ if source_language == "English":
80
+ source_text = "Translate to " + target_language + ": " + source_text
81
+ else:
82
+ source_text = source_text + "।"
83
+ inputs = translation_tokenizer.encode(source_text, return_tensors="pt")
84
+ outputs = translation_model.generate(inputs, max_length=128)
85
+ translated_text = translation_tokenizer.decode(
86
+ outputs[0], skip_special_tokens=True
87
+ )
88
+ st.write("Translated text in " + target_language + ":", translated_text)
89
+
90
+ elif task == "Text Generation":
91
+ prompt = st.text_area("Enter prompt for text generation", "")
92
+ language = st.selectbox("Select Language", ["English", "Turkish", "Hindi"])
93
+ if st.button("Generate"):
94
+ prompt = prompt.strip()
95
+ if language == "English":
96
+ prompt = "Generate text: " + prompt
97
+ elif language == "Hindi":
98
+ prompt = prompt + "।"
99
+ inputs = translation_tokenizer.encode(prompt, return_tensors="pt")
100
+ outputs = translation_model.generate(inputs, max_length=128)
101
+ generated_text = translation_tokenizer.decode(
102
+ outputs[0], skip_special_tokens=True
103
+ )
104
+ st.write("Generated text:", generated_text)
105
+
106
+ elif task == "Sentiment Analysis":
107
+ text = st.text_area("Enter text for sentiment analysis", "")
108
+ if st.button("Analyze Sentiment"):
109
+ result = sentiment_analysis_pipeline(text)
110
+ st.write("Sentiment:", result[0]["label"])
111
+
112
+ elif task == "Named Entity Recognition":
113
+ text = st.text_area("Enter text for named entity recognition", "")
114
+ if st.button("Recognize Entities"):
115
+ entities = ner_pipeline(text)
116
+ st.write("Entities:")
117
+ for entity in entities:
118
+ st.write(entity)
119
+
120
+ elif task == "Summarization":
121
+ text = st.text_area("Enter text for summarization", "")
122
+ if st.button("Summarize"):
123
+ summary = summarization_pipeline(text)
124
+ st.write("Summary:", summary[0]["summary_text"])
125
+
126
+
127
+ if __name__ == "__main__":
128
+ main()
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ streamlit
2
+ transformers
3
+ torch