|
from fastapi import FastAPI |
|
from pydantic import BaseModel |
|
from transformers import T5Tokenizer, T5ForConditionalGeneration |
|
from sentence_transformers import SentenceTransformer |
|
from pinecone import Pinecone |
|
|
|
device = 'cpu' |
|
|
|
|
|
pc = Pinecone(api_key='your-pinecone-api-key') |
|
|
|
|
|
app = FastAPI() |
|
|
|
|
|
def load_models(): |
|
retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base") |
|
tokenizer = T5Tokenizer.from_pretrained('t5-small') |
|
generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device) |
|
|
|
return retriever, generator, tokenizer |
|
|
|
retriever, generator, tokenizer = load_models() |
|
|
|
class QueryInput(BaseModel): |
|
input: str |
|
|
|
@app.post("/predict") |
|
def predict(query: QueryInput): |
|
query_text = query.input |
|
|
|
xq = retriever.encode([query_text]).tolist() |
|
xc = index.query(vector=xq, top_k=1, include_metadata=True) |
|
|
|
if 'matches' in xc and isinstance(xc['matches'], list): |
|
context = [m['metadata']['Output'] for m in xc['matches']] |
|
context_str = " ".join(context) |
|
formatted_query = f"answer the question: {query_text} context: {context_str}" |
|
else: |
|
context_str = "" |
|
formatted_query = f"answer the question: {query_text} context: {context_str}" |
|
|
|
|
|
inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device) |
|
ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2) |
|
answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) |
|
|
|
return {"response": answer} |
|
|