from fastapi import FastAPI from pydantic import BaseModel from transformers import T5Tokenizer, T5ForConditionalGeneration from sentence_transformers import SentenceTransformer from pinecone import Pinecone device = 'cpu' # Initialize Pinecone instance pc = Pinecone(api_key='your-pinecone-api-key') # Initialize FastAPI app app = FastAPI() # Initialize the models def load_models(): retriever = SentenceTransformer("flax-sentence-embeddings/all_datasets_v3_mpnet-base") tokenizer = T5Tokenizer.from_pretrained('t5-small') generator = T5ForConditionalGeneration.from_pretrained('t5-base').to(device) return retriever, generator, tokenizer retriever, generator, tokenizer = load_models() class QueryInput(BaseModel): input: str @app.post("/predict") def predict(query: QueryInput): query_text = query.input # Query Pinecone xq = retriever.encode([query_text]).tolist() xc = index.query(vector=xq, top_k=1, include_metadata=True) if 'matches' in xc and isinstance(xc['matches'], list): context = [m['metadata']['Output'] for m in xc['matches']] context_str = " ".join(context) formatted_query = f"answer the question: {query_text} context: {context_str}" else: context_str = "" formatted_query = f"answer the question: {query_text} context: {context_str}" # Generate answer using T5 model inputs = tokenizer.encode(formatted_query, return_tensors="pt", max_length=512, truncation=True).to(device) ids = generator.generate(inputs, num_beams=2, min_length=10, max_length=60, repetition_penalty=1.2) answer = tokenizer.decode(ids[0], skip_special_tokens=True, clean_up_tokenization_spaces=False) return {"response": answer}