File size: 764 Bytes
4375924 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
@st.cache_resource
def load_model():
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-7B")
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-7B")
return tokenizer, model
tokenizer, model = load_model()
# Streamlit app UI
st.title("Qwen-7B Text Generation")
# Text input
user_input = st.text_area("Enter your text:")
# Generate text on button click
if st.button("Generate"):
inputs = tokenizer(user_input, return_tensors="pt")
outputs = model.generate(**inputs, max_length=100)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
st.write("Generated Text:")
st.write(generated_text)
|