seikin_alexey commited on
Commit
4745aa4
·
1 Parent(s): cb8d014
Files changed (2) hide show
  1. README.md +1 -1
  2. app4.py +63 -0
README.md CHANGED
@@ -5,7 +5,7 @@ colorFrom: green
5
  colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 3.0.19
8
- app_file: app3.py
9
  pinned: false
10
  duplicated_from: harish3110/emotion_detection
11
  ---
 
5
  colorTo: indigo
6
  sdk: gradio
7
  sdk_version: 3.0.19
8
+ app_file: app4.py
9
  pinned: false
10
  duplicated_from: harish3110/emotion_detection
11
  ---
app4.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from speechbrain.pretrained.interfaces import foreign_class
2
+ import gradio as gr
3
+ import os
4
+ import warnings
5
+ warnings.filterwarnings("ignore")
6
+
7
+ # Function to get the list of audio files in the 'rec/' directory
8
+ def get_audio_files_list(directory="rec"):
9
+ try:
10
+ return [f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))]
11
+ except FileNotFoundError:
12
+ print("The 'rec' directory does not exist. Please make sure it is the correct path.")
13
+ return []
14
+
15
+ # Loading the speechbrain emotion detection model
16
+ learner = foreign_class(
17
+ source="speechbrain/emotion-recognition-wav2vec2-IEMOCAP",
18
+ pymodule_file="custom_interface.py",
19
+ classname="CustomEncoderWav2vec2Classifier"
20
+ )
21
+
22
+ # Building prediction function for Gradio
23
+ emotion_dict = {
24
+ 'sad': 'Sad',
25
+ 'hap': 'Happy',
26
+ 'ang': 'Anger',
27
+ 'fea': 'Fear',
28
+ 'sur': 'Surprised',
29
+ 'neu': 'Neutral'
30
+ }
31
+
32
+ def predict_emotion(selected_audio):
33
+ if selected_audio is None: # Check if an audio file is selected
34
+ return "Please select an audio file.", None
35
+ file_path = os.path.join("rec", selected_audio)
36
+ out_prob, score, index, text_lab = learner.classify_file(file_path)
37
+ emotion = emotion_dict[text_lab[0]]
38
+ return emotion, file_path # Return both emotion and file path
39
+
40
+ # Get the list of audio files for the dropdown
41
+ audio_files_list = get_audio_files_list()
42
+
43
+ # Loading Gradio interface
44
+ dropdown = gr.Dropdown(label="Select Audio", choices=audio_files_list)
45
+ button = gr.Button("Detect emotion")
46
+ outputs = [gr.outputs.Textbox(label="Predicted Emotion"), gr.outputs.Audio(label="Play Audio")]
47
+
48
+ def button_click(selected_audio):
49
+ return predict_emotion(selected_audio) # Call predict_emotion when button is clicked
50
+
51
+ title = "ML Speech Emotion Detection"
52
+ description = "Speechbrain powered wav2vec 2.0 pretrained model on IEMOCAP dataset using Gradio."
53
+
54
+ # Create the Gradio interface
55
+ interface = gr.Interface(
56
+ fn=button_click, # Use the button_click function for the interface
57
+ inputs=[dropdown, button],
58
+ outputs=outputs,
59
+ title=title,
60
+ description=description
61
+ )
62
+
63
+ interface.launch()