imrnh commited on
Commit
cc36e9b
1 Parent(s): 848a622

Create main.py

Browse files
Files changed (1) hide show
  1. main.py +54 -0
main.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, UploadFile, File
2
+ import torch
3
+ from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
4
+
5
+ app = FastAPI()
6
+
7
+
8
+ device = "cuda:0" if torch.cuda.is_available() else "cpu"
9
+ torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
10
+
11
+ model_id = "openai/whisper-large-v3"
12
+
13
+ model = AutoModelForSpeechSeq2Seq.from_pretrained(
14
+ model_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
15
+ )
16
+ model.to(device)
17
+
18
+ processor = AutoProcessor.from_pretrained(model_id)
19
+
20
+ pipe = pipeline(
21
+ "automatic-speech-recognition",
22
+ model=model,
23
+ tokenizer=processor.tokenizer,
24
+ feature_extractor=processor.feature_extractor,
25
+ max_new_tokens=128,
26
+ chunk_length_s=30,
27
+ batch_size=16,
28
+ return_timestamps=True,
29
+ torch_dtype=torch_dtype,
30
+ device=device,
31
+ )
32
+
33
+ sample = dataset[0]["audio"]
34
+
35
+ # result = pipe(sample)
36
+ # print(result["text"])
37
+
38
+
39
+ @app.post("/speech_to_text")
40
+ async def speech_to_text(file : UploadFile = File(...))
41
+ if file:
42
+ contents = await file.read()
43
+ with open(file.filename, "wb") as f:
44
+ f.write(contents)
45
+
46
+ converted_result = pipe(file.filename)
47
+ return {
48
+ "status": 200,
49
+ "text": converted_result["text"]
50
+ }
51
+ else:
52
+ return {
53
+ "status": -1
54
+ }