""" Internal code snippets were obtained from https://github.com/SystemErrorWang/White-box-Cartoonization/ For it to work tensorflow version 2.x changes were obtained from https://github.com/steubk/White-box-Cartoonization """ import os import uuid import time import subprocess import sys import cv2 import numpy as np import skvideo.io try: import tensorflow.compat.v1 as tf except ImportError: import tensorflow as tf import network import guided_filter class WB_Cartoonize: def __init__(self, weights_dir, gpu): if not os.path.exists(weights_dir): raise FileNotFoundError("Weights Directory not found, check path") self.load_model(weights_dir, gpu) print("Weights successfully loaded") def resize_crop(self, image): h, w, c = np.shape(image) if min(h, w) > 720: if h > w: h, w = int(720*h/w), 720 else: h, w = 720, int(720*w/h) image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) h, w = (h//8)*8, (w//8)*8 image = image[:h, :w, :] return image def load_model(self, weights_dir, gpu): try: tf.disable_eager_execution() except: None tf.reset_default_graph() self.input_photo = tf.placeholder(tf.float32, [1, None, None, 3], name='input_image') network_out = network.unet_generator(self.input_photo) self.final_out = guided_filter.guided_filter(self.input_photo, network_out, r=1, eps=5e-3) all_vars = tf.trainable_variables() gene_vars = [var for var in all_vars if 'generator' in var.name] saver = tf.train.Saver(var_list=gene_vars) if gpu: gpu_options = tf.GPUOptions(allow_growth=True) device_count = {'GPU':1} else: gpu_options = None device_count = {'GPU':0} config = tf.ConfigProto(gpu_options=None, device_count={'GPU':0}) self.sess = tf.Session(config=config) self.sess.run(tf.global_variables_initializer()) saver.restore(self.sess, tf.train.latest_checkpoint(weights_dir)) def infer(self, image): image = self.resize_crop(image) batch_image = image.astype(np.float32)/127.5 - 1 batch_image = np.expand_dims(batch_image, axis=0) ## Session Run output = self.sess.run(self.final_out, feed_dict={self.input_photo: batch_image}) ## Post Process output = (np.squeeze(output)+1)*127.5 output = np.clip(output, 0, 255).astype(np.uint8) return output def process_video(self, fname, frame_rate): ## Capture video using opencv cap = cv2.VideoCapture(fname) target_size = (int(cap.get(3)),int(cap.get(4))) output_fname = os.path.abspath('{}/{}-{}.mp4'.format(fname.replace(os.path.basename(fname), ''),str(uuid.uuid4())[:7],os.path.basename(fname).split('.')[0])) out = skvideo.io.FFmpegWriter(output_fname, inputdict={'-r':frame_rate}, outputdict={'-r':frame_rate}) while True: ret, frame = cap.read() if ret: frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) frame = self.infer(frame) frame = cv2.resize(frame, target_size) out.writeFrame(frame) else: break cap.release() out.close() final_name = '{}final_{}'.format(fname.replace(os.path.basename(fname), ''), os.path.basename(output_fname)) p = subprocess.Popen(['ffmpeg','-i','{}'.format(output_fname), "-pix_fmt", "yuv420p", final_name]) p.communicate() p.wait() os.system("rm "+output_fname) return final_name if __name__ == '__main__': gpu = len(sys.argv) < 2 or sys.argv[1] != '--cpu' wbc = WB_Cartoonize(os.path.abspath('white_box_cartoonizer/saved_models'), gpu) img = cv2.imread('white_box_cartoonizer/test.jpg') img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) cartoon_image = wbc.infer(img) import matplotlib.pyplot as plt plt.imshow(cartoon_image) plt.show()