File size: 5,024 Bytes
fdbda89
 
ccc765e
 
 
fdbda89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40f83cf
 
 
 
 
 
 
 
 
fdbda89
 
 
 
 
 
 
 
 
 
 
 
ccc765e
 
fdbda89
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://huggingface.co/spaces/sayakpaul/demo-docker-gradio
"""
import argparse
import json
import platform
from typing import Tuple

import gradio as gr
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image

from project_settings import project_path, temp_directory
from toolbox.webrtcvad.vad import WebRTCVad


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--webrtcvad_examples_file",
        default=(project_path / "webrtcvad_examples.json").as_posix(),
        type=str
    )
    args = parser.parse_args()
    return args


webrtcvad: WebRTCVad = None


def click_webrtcvad_button(audio: Tuple[int, np.ndarray],
                           agg: int = 3,
                           frame_duration_ms: int = 30,
                           padding_duration_ms: int = 300,
                           silence_duration_threshold: float = 0.3,
                           ):
    global webrtcvad

    sample_rate, signal = audio

    webrtcvad = WebRTCVad(agg=int(agg),
                          frame_duration_ms=frame_duration_ms,
                          padding_duration_ms=padding_duration_ms,
                          silence_duration_threshold=silence_duration_threshold,
                          sample_rate=sample_rate,
                          )

    vad_segments = list()
    segments = webrtcvad.vad(signal)
    vad_segments += segments
    segments = webrtcvad.last_vad_segments()
    vad_segments += segments

    time = np.arange(0, len(signal)) / sample_rate
    plt.figure(figsize=(12, 5))
    plt.plot(time, signal / 32768, color='b')
    for start, end in vad_segments:
        plt.axvline(x=start, ymin=0.25, ymax=0.75, color='g', linestyle='--', label='开始端点')  # 标记开始端点
        plt.axvline(x=end, ymin=0.25, ymax=0.75, color='r', linestyle='--', label='结束端点')  # 标记结束端点

    temp_image_file = temp_directory / "temp.jpg"
    plt.savefig(temp_image_file)
    image = Image.open(open(temp_image_file, "rb"))

    return image, vad_segments


def main():
    args = get_args()

    brief_description = """
    ## Voice Activity Detection

    """

    # examples
    with open(args.webrtcvad_examples_file, "r", encoding="utf-8") as f:
        webrtcvad_examples = json.load(f)

    # ui
    with gr.Blocks() as blocks:
        gr.Markdown(value=brief_description)

        with gr.Row():
            with gr.Column(scale=5):
                with gr.Tabs():
                    with gr.TabItem("webrtcvad"):
                        gr.Markdown(value="")

                        with gr.Row():
                            with gr.Column(scale=1):
                                webrtcvad_wav = gr.Audio(label="wav")

                                with gr.Row():
                                    webrtcvad_agg = gr.Dropdown(choices=[1, 2, 3], value=3, label="agg")
                                    webrtcvad_frame_duration_ms = gr.Slider(minimum=0, maximum=100, value=30, label="frame_duration_ms")

                                with gr.Row():
                                    webrtcvad_padding_duration_ms = gr.Slider(minimum=0, maximum=1000, value=300, label="padding_duration_ms")
                                    webrtcvad_silence_duration_threshold = gr.Slider(minimum=0, maximum=1.0, value=0.3, step=0.1, label="silence_duration_threshold")

                                webrtcvad_button = gr.Button("retrieval", variant="primary")

                            with gr.Column(scale=1):
                                webrtcvad_image = gr.Image(label="image", height=300, width=720, show_label=False)
                                webrtcvad_end_points = gr.TextArea(label="end_points", max_lines=35)

                        # gr.Examples(
                        #     examples=webrtcvad_examples,
                        #     inputs=[
                        #         webrtcvad_wav, webrtcvad_agg, webrtcvad_frame_duration_ms,
                        #         webrtcvad_padding_duration_ms, webrtcvad_silence_duration_threshold
                        #     ],
                        #     outputs=[webrtcvad_image, webrtcvad_end_points],
                        #     fn=click_webrtcvad_button
                        # )

                        # click event
                        webrtcvad_button.click(
                            click_webrtcvad_button,
                            inputs=[
                                webrtcvad_wav, webrtcvad_agg, webrtcvad_frame_duration_ms,
                                webrtcvad_padding_duration_ms, webrtcvad_silence_duration_threshold
                            ],
                            outputs=[webrtcvad_image, webrtcvad_end_points],
                        )

    blocks.queue().launch(
        share=False if platform.system() == "Windows" else False,
        server_name="0.0.0.0", server_port=7860
    )
    return


if __name__ == "__main__":
    main()