Spaces:
Runtime error
Runtime error
intoxication
commited on
Commit
·
df118cf
1
Parent(s):
209df17
Update utils/haystack.py
Browse files- utils/haystack.py +66 -16
utils/haystack.py
CHANGED
@@ -1,22 +1,72 @@
|
|
1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
|
|
|
|
|
7 |
|
8 |
-
#
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
+
import logging
|
3 |
+
import pandas as pd
|
4 |
+
from haystack.utils import print_answers
|
5 |
+
from haystack.pipelines import Pipeline
|
6 |
+
from haystack.document_stores import ElasticsearchDocumentStore
|
7 |
+
from haystack.nodes import EmbeddingRetriever
|
8 |
+
from haystack.nodes.other.docs2answers import Docs2Answers
|
9 |
+
from haystack.utils import launch_es, fetch_archive_from_http
|
10 |
|
11 |
+
# Initialize logging
|
12 |
+
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
|
13 |
+
logging.getLogger("haystack").setLevel(logging.INFO)
|
14 |
|
15 |
+
# Launch Elasticsearch
|
16 |
+
launch_es()
|
17 |
|
18 |
+
# Initialize the Haystack pipeline and document store
|
19 |
+
document_store = ElasticsearchDocumentStore(
|
20 |
+
host="localhost",
|
21 |
+
username="",
|
22 |
+
password="",
|
23 |
+
index="document",
|
24 |
+
embedding_field="question_emb",
|
25 |
+
embedding_dim=384,
|
26 |
+
excluded_meta_data=["question_emb"],
|
27 |
+
similarity="cosine",
|
28 |
+
)
|
29 |
|
30 |
+
retriever = EmbeddingRetriever(
|
31 |
+
document_store=document_store,
|
32 |
+
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
33 |
+
use_gpu=True,
|
34 |
+
scale_score=False,
|
35 |
+
)
|
36 |
|
37 |
+
doc_to_answers = Docs2Answers()
|
38 |
+
|
39 |
+
doc_dir = "data/basic_faq_pipeline"
|
40 |
+
s3_url = "https://core-engineering.s3.eu-central-1.amazonaws.com/public/scripts/small_faq_covid.csv1.zip"
|
41 |
+
fetch_archive_from_http(url=s3_url, output_dir=doc_dir)
|
42 |
+
|
43 |
+
df = pd.read_csv(f"{doc_dir}/small_faq_covid.csv")
|
44 |
+
|
45 |
+
# Minimal cleaning
|
46 |
+
df.fillna(value="", inplace=True)
|
47 |
+
df["question"] = df["question"].apply(lambda x: x.strip())
|
48 |
+
|
49 |
+
# Get embeddings for our questions from the FAQs
|
50 |
+
questions = list(df["question"].values)
|
51 |
+
df["question_emb"] = retriever.embed_queries(queries=questions).tolist()
|
52 |
+
df = df.rename(columns={"question": "content"})
|
53 |
+
|
54 |
+
# Convert Dataframe to list of dicts and index them in our DocumentStore
|
55 |
+
docs_to_index = df.to_dict(orient="records")
|
56 |
+
document_store.write_documents(docs_to_index)
|
57 |
+
|
58 |
+
# Initialize a Pipeline (this time without a reader) and ask questions
|
59 |
+
pipeline = Pipeline()
|
60 |
+
pipeline.add_node(component=retriever, name="Retriever", inputs=["Query"])
|
61 |
+
pipeline.add_node(component=doc_to_answers, name="Docs2Answers", inputs=["Retriever"])
|
62 |
+
|
63 |
+
# Create the Streamlit app
|
64 |
+
st.title("FAQ Search")
|
65 |
+
question = st.text_input("Ask a question:")
|
66 |
+
|
67 |
+
if question:
|
68 |
+
params = {"Retriever": {"top_k": 10}} # Modify parameters as needed
|
69 |
+
prediction = pipeline.run(query=question, params=params)
|
70 |
+
|
71 |
+
st.subheader("Answers:")
|
72 |
+
print_answers(prediction, details="medium")
|