invincible-jha
commited on
Upload app.py
Browse files
app.py
CHANGED
@@ -14,16 +14,102 @@ class ModelManager:
|
|
14 |
self.load_models()
|
15 |
|
16 |
def load_models(self):
|
17 |
-
|
18 |
self.processors['whisper'] = WhisperProcessor.from_pretrained("openai/whisper-base")
|
19 |
self.models['whisper'] = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(self.device)
|
20 |
|
21 |
-
|
22 |
self.tokenizers['emotion'] = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
23 |
self.models['emotion'] = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base").to(self.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
-
self.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
|
|
|
|
|
14 |
self.load_models()
|
15 |
|
16 |
def load_models(self):
|
17 |
+
print("Loading Whisper model...")
|
18 |
self.processors['whisper'] = WhisperProcessor.from_pretrained("openai/whisper-base")
|
19 |
self.models['whisper'] = WhisperForConditionalGeneration.from_pretrained("openai/whisper-base").to(self.device)
|
20 |
|
21 |
+
print("Loading emotion model...")
|
22 |
self.tokenizers['emotion'] = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
23 |
self.models['emotion'] = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base").to(self.device)
|
24 |
+
|
25 |
+
class AudioProcessor:
|
26 |
+
def __init__(self):
|
27 |
+
self.sample_rate = 16000
|
28 |
+
self.n_mfcc = 13
|
29 |
+
|
30 |
+
def process_audio(self, audio_path):
|
31 |
+
waveform, sr = librosa.load(audio_path, sr=self.sample_rate)
|
32 |
+
return waveform, self._extract_features(waveform)
|
33 |
+
|
34 |
+
def _extract_features(self, waveform):
|
35 |
+
return {
|
36 |
+
'mfcc': librosa.feature.mfcc(y=waveform, sr=self.sample_rate, n_mfcc=self.n_mfcc),
|
37 |
+
'energy': librosa.feature.rms(y=waveform)[0]
|
38 |
+
}
|
39 |
+
|
40 |
+
class Analyzer:
|
41 |
+
def __init__(self):
|
42 |
+
print("Initializing Analyzer...")
|
43 |
+
self.model_manager = ModelManager()
|
44 |
+
self.audio_processor = AudioProcessor()
|
45 |
+
print("Analyzer initialization complete")
|
46 |
+
|
47 |
+
def analyze(self, audio_path):
|
48 |
+
print(f"Processing audio file: {audio_path}")
|
49 |
+
# Process audio
|
50 |
+
waveform, features = self.audio_processor.process_audio(audio_path)
|
51 |
+
|
52 |
+
# Transcribe
|
53 |
+
print("Transcribing audio...")
|
54 |
+
inputs = self.model_manager.processors['whisper'](waveform, return_tensors="pt").input_features.to(self.model_manager.device)
|
55 |
+
predicted_ids = self.model_manager.models['whisper'].generate(inputs)
|
56 |
+
transcription = self.model_manager.processors['whisper'].batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
57 |
|
58 |
+
# Analyze emotions
|
59 |
+
print("Analyzing emotions...")
|
60 |
+
inputs = self.model_manager.tokenizers['emotion'](transcription, return_tensors="pt", padding=True, truncation=True)
|
61 |
+
outputs = self.model_manager.models['emotion'](**inputs)
|
62 |
+
emotions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
63 |
+
|
64 |
+
emotion_labels = ['anger', 'fear', 'joy', 'neutral', 'sadness', 'surprise']
|
65 |
+
emotion_scores = {
|
66 |
+
label: float(score)
|
67 |
+
for label, score in zip(emotion_labels, emotions[0])
|
68 |
+
}
|
69 |
+
|
70 |
+
return {
|
71 |
+
'transcription': transcription,
|
72 |
+
'emotions': emotion_scores
|
73 |
+
}
|
74 |
+
|
75 |
+
def create_emotion_plot(emotions):
|
76 |
+
fig = go.Figure(data=[
|
77 |
+
go.Bar(x=list(emotions.keys()), y=list(emotions.values()))
|
78 |
+
])
|
79 |
+
fig.update_layout(
|
80 |
+
title='Emotion Analysis',
|
81 |
+
yaxis_range=[0, 1]
|
82 |
+
)
|
83 |
+
return fig.to_html()
|
84 |
+
|
85 |
+
print("Initializing application...")
|
86 |
+
analyzer = Analyzer()
|
87 |
+
|
88 |
+
def process_audio(audio_file):
|
89 |
+
try:
|
90 |
+
print(f"Processing audio file: {audio_file}")
|
91 |
+
results = analyzer.analyze(audio_file)
|
92 |
+
|
93 |
+
return (
|
94 |
+
results['transcription'],
|
95 |
+
create_emotion_plot(results['emotions'])
|
96 |
+
)
|
97 |
+
except Exception as e:
|
98 |
+
print(f"Error processing audio: {str(e)}")
|
99 |
+
return str(e), "Error in analysis"
|
100 |
+
|
101 |
+
print("Creating Gradio interface...")
|
102 |
+
interface = gr.Interface(
|
103 |
+
fn=process_audio,
|
104 |
+
inputs=gr.Audio(source="microphone", type="filepath"),
|
105 |
+
outputs=[
|
106 |
+
gr.Textbox(label="Transcription"),
|
107 |
+
gr.HTML(label="Emotion Analysis")
|
108 |
+
],
|
109 |
+
title="Vocal Biomarker Analysis",
|
110 |
+
description="Analyze voice for emotional indicators"
|
111 |
+
)
|
112 |
|
113 |
+
print("Launching application...")
|
114 |
+
if __name__ == "__main__":
|
115 |
+
interface.launch()
|