invincible-jha
commited on
Upload app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
import torch
|
3 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
@@ -8,109 +9,326 @@ import plotly.graph_objects as go
|
|
8 |
import warnings
|
9 |
import os
|
10 |
from scipy.stats import kurtosis, skew
|
|
|
|
|
11 |
warnings.filterwarnings('ignore')
|
12 |
|
13 |
-
#
|
14 |
processor = None
|
15 |
whisper_model = None
|
16 |
emotion_tokenizer = None
|
17 |
emotion_model = None
|
18 |
|
19 |
def load_models():
|
20 |
-
"""Initialize and load all required
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
global processor, whisper_model, emotion_tokenizer, emotion_model
|
22 |
|
23 |
try:
|
|
|
24 |
print("Loading Whisper model...")
|
25 |
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
26 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
27 |
|
|
|
28 |
print("Loading emotion model...")
|
29 |
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
30 |
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
31 |
|
32 |
-
# Move models to
|
33 |
-
device = "cpu"
|
34 |
whisper_model.to(device)
|
35 |
emotion_model.to(device)
|
36 |
|
37 |
print("Models loaded successfully!")
|
38 |
return True
|
|
|
39 |
except Exception as e:
|
40 |
print(f"Error loading models: {str(e)}")
|
41 |
return False
|
42 |
|
43 |
-
# Your existing feature extraction functions remain the same
|
44 |
def extract_prosodic_features(waveform, sr):
|
45 |
-
"""Extract
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
try:
|
|
|
|
|
|
|
|
|
|
|
47 |
features = {}
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
return features
|
|
|
50 |
except Exception as e:
|
51 |
-
print(f"
|
52 |
return None
|
53 |
|
54 |
def create_feature_plots(features):
|
55 |
-
"""Create visualizations for
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
try:
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
return fig.to_html(include_plotlyjs=True)
|
|
|
59 |
except Exception as e:
|
60 |
print(f"Error in create_feature_plots: {str(e)}")
|
61 |
return None
|
62 |
|
63 |
def create_emotion_plot(emotions):
|
64 |
-
"""Create emotion analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
try:
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
return fig.to_html(include_plotlyjs=True)
|
68 |
except Exception as e:
|
69 |
print(f"Error in create_emotion_plot: {str(e)}")
|
70 |
return None
|
71 |
|
72 |
def analyze_audio(audio_input):
|
73 |
-
"""Main function
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
try:
|
77 |
if audio_input is None:
|
78 |
return "Please provide an audio input", None, None
|
79 |
|
80 |
-
|
81 |
-
|
82 |
-
# Handle audio input
|
83 |
if isinstance(audio_input, tuple):
|
84 |
audio_path = audio_input[0]
|
85 |
else:
|
86 |
audio_path = audio_input
|
87 |
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
waveform, sr = librosa.load(audio_path, sr=16000)
|
92 |
-
print(f"Audio loaded: {waveform.shape}, SR: {sr}")
|
93 |
|
|
|
|
|
|
|
94 |
# Extract voice features
|
95 |
-
print("Extracting voice features...")
|
96 |
features = extract_prosodic_features(waveform, sr)
|
97 |
if features is None:
|
98 |
-
return "Error extracting voice features", None, None
|
99 |
|
100 |
-
# Create
|
101 |
-
print("Creating feature visualizations...")
|
102 |
feature_viz = create_feature_plots(features)
|
103 |
|
104 |
-
#
|
105 |
-
print("Transcribing audio...")
|
106 |
inputs = processor(waveform, sampling_rate=sr, return_tensors="pt").input_features
|
107 |
-
|
108 |
with torch.no_grad():
|
109 |
predicted_ids = whisper_model.generate(inputs)
|
110 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
111 |
|
112 |
# Analyze emotions
|
113 |
-
print("Analyzing emotions...")
|
114 |
emotion_inputs = emotion_tokenizer(
|
115 |
transcription,
|
116 |
return_tensors="pt",
|
@@ -131,7 +349,7 @@ def analyze_audio(audio_input):
|
|
131 |
|
132 |
emotion_viz = create_emotion_plot(emotion_scores)
|
133 |
|
134 |
-
#
|
135 |
summary = f"""Voice Analysis Summary:
|
136 |
|
137 |
Speech Content:
|
@@ -144,6 +362,9 @@ Voice Characteristics:
|
|
144 |
- Voice Energy: {features['energy_mean']:.4f}
|
145 |
|
146 |
Dominant Emotion: {max(emotion_scores.items(), key=lambda x: x[1])[0]}
|
|
|
|
|
|
|
147 |
"""
|
148 |
|
149 |
return summary, emotion_viz, feature_viz
|
@@ -158,15 +379,14 @@ try:
|
|
158 |
print("===== Application Startup =====")
|
159 |
if not load_models():
|
160 |
raise RuntimeError("Failed to load required models")
|
161 |
-
print("Models loaded successfully, creating Gradio interface...")
|
162 |
|
163 |
-
# Create Gradio interface
|
164 |
demo = gr.Interface(
|
165 |
fn=analyze_audio,
|
166 |
inputs=gr.Audio(
|
167 |
sources=["microphone", "upload"],
|
168 |
type="filepath",
|
169 |
-
label="Audio Input"
|
170 |
),
|
171 |
outputs=[
|
172 |
gr.Textbox(label="Analysis Summary", lines=10),
|
@@ -175,33 +395,35 @@ try:
|
|
175 |
],
|
176 |
title="Voice Analysis System",
|
177 |
description="""
|
178 |
-
This application
|
179 |
|
180 |
1. Voice Features:
|
181 |
-
- Pitch analysis
|
182 |
-
- Energy patterns
|
183 |
-
- Speech rate
|
184 |
-
- Voice quality
|
185 |
|
186 |
2. Emotional Content:
|
187 |
-
- Emotion detection
|
188 |
-
- Emotional intensity
|
189 |
|
190 |
3. Speech Content:
|
191 |
-
-
|
192 |
|
|
|
|
|
|
|
|
|
|
|
|
|
193 |
Upload an audio file or record directly through your microphone.
|
194 |
-
"""
|
195 |
-
examples=None,
|
196 |
-
cache_examples=False
|
197 |
)
|
198 |
|
199 |
-
print("Gradio interface created successfully")
|
200 |
-
|
201 |
# Launch the interface
|
202 |
if __name__ == "__main__":
|
203 |
-
print("Launching application...")
|
204 |
demo.launch()
|
|
|
205 |
except Exception as e:
|
206 |
print(f"Error during application startup: {str(e)}")
|
207 |
raise
|
|
|
1 |
+
# Import necessary libraries for the voice analysis system
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
|
|
9 |
import warnings
|
10 |
import os
|
11 |
from scipy.stats import kurtosis, skew
|
12 |
+
|
13 |
+
# Suppress unnecessary warnings for cleaner output
|
14 |
warnings.filterwarnings('ignore')
|
15 |
|
16 |
+
# Initialize global variables for model storage
|
17 |
processor = None
|
18 |
whisper_model = None
|
19 |
emotion_tokenizer = None
|
20 |
emotion_model = None
|
21 |
|
22 |
def load_models():
|
23 |
+
"""Initialize and load all required machine learning models.
|
24 |
+
|
25 |
+
This function handles the loading of both the Whisper speech recognition model
|
26 |
+
and the emotion detection model. It includes proper error handling and
|
27 |
+
device management for optimal performance.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
bool: True if all models loaded successfully, False otherwise
|
31 |
+
"""
|
32 |
global processor, whisper_model, emotion_tokenizer, emotion_model
|
33 |
|
34 |
try:
|
35 |
+
# Load the Whisper model for speech recognition
|
36 |
print("Loading Whisper model...")
|
37 |
processor = WhisperProcessor.from_pretrained("openai/whisper-tiny")
|
38 |
whisper_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny")
|
39 |
|
40 |
+
# Load the emotion detection model
|
41 |
print("Loading emotion model...")
|
42 |
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
43 |
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
44 |
|
45 |
+
# Move models to CPU for consistent performance
|
46 |
+
device = "cpu"
|
47 |
whisper_model.to(device)
|
48 |
emotion_model.to(device)
|
49 |
|
50 |
print("Models loaded successfully!")
|
51 |
return True
|
52 |
+
|
53 |
except Exception as e:
|
54 |
print(f"Error loading models: {str(e)}")
|
55 |
return False
|
56 |
|
|
|
57 |
def extract_prosodic_features(waveform, sr):
|
58 |
+
"""Extract voice characteristics from audio data with enhanced error handling.
|
59 |
+
|
60 |
+
This function analyzes the audio waveform to extract various voice features
|
61 |
+
including pitch, energy, rhythm, and voice quality metrics. It includes
|
62 |
+
robust error handling and validation for each feature.
|
63 |
+
|
64 |
+
Args:
|
65 |
+
waveform (numpy.ndarray): Audio signal
|
66 |
+
sr (int): Sampling rate of the audio
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
dict: Dictionary containing extracted features or None if extraction fails
|
70 |
+
"""
|
71 |
try:
|
72 |
+
# Validate input waveform
|
73 |
+
if waveform is None or len(waveform) == 0:
|
74 |
+
print("Error: Empty or invalid waveform")
|
75 |
+
return None
|
76 |
+
|
77 |
features = {}
|
78 |
+
|
79 |
+
# Extract pitch features with enhanced reliability
|
80 |
+
try:
|
81 |
+
# Configure pitch detection parameters for optimal results
|
82 |
+
pitches, magnitudes = librosa.piptrack(
|
83 |
+
y=waveform,
|
84 |
+
sr=sr,
|
85 |
+
fmin=50, # Minimum frequency for human voice
|
86 |
+
fmax=2000, # Maximum frequency for human voice
|
87 |
+
n_mels=128, # Frequency resolution
|
88 |
+
hop_length=512, # Time resolution
|
89 |
+
win_length=2048 # Analysis window size
|
90 |
+
)
|
91 |
+
|
92 |
+
# Extract and validate pitch contour
|
93 |
+
f0_contour = []
|
94 |
+
for t in range(pitches.shape[1]):
|
95 |
+
index = magnitudes[:, t].argmax()
|
96 |
+
pitch = pitches[index, t]
|
97 |
+
if 50 <= pitch <= 2000: # Physiologically valid range
|
98 |
+
f0_contour.append(pitch)
|
99 |
+
|
100 |
+
f0_contour = np.array(f0_contour)
|
101 |
+
|
102 |
+
# Calculate pitch statistics with validation
|
103 |
+
if len(f0_contour) > 0:
|
104 |
+
features['pitch_mean'] = float(np.mean(f0_contour))
|
105 |
+
features['pitch_std'] = float(np.std(f0_contour))
|
106 |
+
features['pitch_range'] = float(np.ptp(f0_contour))
|
107 |
+
else:
|
108 |
+
# Use default values if no valid pitch detected
|
109 |
+
features['pitch_mean'] = 160.0 # Average adult speaking pitch
|
110 |
+
features['pitch_std'] = 0.0
|
111 |
+
features['pitch_range'] = 0.0
|
112 |
+
|
113 |
+
except Exception as e:
|
114 |
+
print(f"Error in pitch extraction: {str(e)}")
|
115 |
+
features['pitch_mean'] = 160.0
|
116 |
+
features['pitch_std'] = 0.0
|
117 |
+
features['pitch_range'] = 0.0
|
118 |
+
|
119 |
+
# Extract energy features with noise reduction
|
120 |
+
try:
|
121 |
+
rms = librosa.feature.rms(
|
122 |
+
y=waveform,
|
123 |
+
frame_length=2048,
|
124 |
+
hop_length=512,
|
125 |
+
center=True
|
126 |
+
)[0]
|
127 |
+
|
128 |
+
features['energy_mean'] = float(np.mean(rms))
|
129 |
+
features['energy_std'] = float(np.std(rms))
|
130 |
+
features['energy_range'] = float(np.ptp(rms))
|
131 |
+
|
132 |
+
except Exception as e:
|
133 |
+
print(f"Error in energy extraction: {str(e)}")
|
134 |
+
features['energy_mean'] = 0.02
|
135 |
+
features['energy_std'] = 0.0
|
136 |
+
features['energy_range'] = 0.0
|
137 |
+
|
138 |
+
# Extract rhythm features with improved accuracy
|
139 |
+
try:
|
140 |
+
onset_env = librosa.onset.onset_strength(
|
141 |
+
y=waveform,
|
142 |
+
sr=sr,
|
143 |
+
hop_length=512,
|
144 |
+
aggregate=np.median
|
145 |
+
)
|
146 |
+
|
147 |
+
tempo = librosa.beat.tempo(
|
148 |
+
onset_envelope=onset_env,
|
149 |
+
sr=sr,
|
150 |
+
hop_length=512,
|
151 |
+
aggregate=None
|
152 |
+
)
|
153 |
+
|
154 |
+
# Validate tempo within normal speech range
|
155 |
+
if 40 <= tempo[0] <= 240:
|
156 |
+
features['tempo'] = float(tempo[0])
|
157 |
+
else:
|
158 |
+
features['tempo'] = 120.0 # Default speaking rate
|
159 |
+
|
160 |
+
except Exception as e:
|
161 |
+
print(f"Error in rhythm extraction: {str(e)}")
|
162 |
+
features['tempo'] = 120.0
|
163 |
+
|
164 |
+
# Verify all required features are present
|
165 |
+
required_features = [
|
166 |
+
'pitch_mean', 'pitch_std', 'pitch_range',
|
167 |
+
'energy_mean', 'energy_std', 'energy_range',
|
168 |
+
'tempo'
|
169 |
+
]
|
170 |
+
|
171 |
+
for feature in required_features:
|
172 |
+
if feature not in features or not isinstance(features[feature], (int, float)):
|
173 |
+
print(f"Warning: Invalid or missing feature: {feature}")
|
174 |
+
features[feature] = 0.0
|
175 |
+
|
176 |
return features
|
177 |
+
|
178 |
except Exception as e:
|
179 |
+
print(f"Critical error in extract_prosodic_features: {str(e)}")
|
180 |
return None
|
181 |
|
182 |
def create_feature_plots(features):
|
183 |
+
"""Create visualizations for the extracted voice features.
|
184 |
+
|
185 |
+
This function generates interactive plots showing the various voice
|
186 |
+
characteristics including pitch, energy, and rhythm features.
|
187 |
+
|
188 |
+
Args:
|
189 |
+
features (dict): Dictionary containing the extracted voice features
|
190 |
+
|
191 |
+
Returns:
|
192 |
+
str: HTML representation of the plots or None if visualization fails
|
193 |
+
"""
|
194 |
try:
|
195 |
+
fig = go.Figure()
|
196 |
+
|
197 |
+
# Add pitch feature visualization
|
198 |
+
pitch_data = {
|
199 |
+
'Mean': features['pitch_mean'],
|
200 |
+
'Std Dev': features['pitch_std'],
|
201 |
+
'Range': features['pitch_range']
|
202 |
+
}
|
203 |
+
|
204 |
+
fig.add_trace(go.Bar(
|
205 |
+
name='Pitch Features (Hz)',
|
206 |
+
x=list(pitch_data.keys()),
|
207 |
+
y=list(pitch_data.values()),
|
208 |
+
marker_color='blue'
|
209 |
+
))
|
210 |
+
|
211 |
+
# Add energy feature visualization
|
212 |
+
energy_data = {
|
213 |
+
'Mean': features['energy_mean'],
|
214 |
+
'Std Dev': features['energy_std'],
|
215 |
+
'Range': features['energy_range']
|
216 |
+
}
|
217 |
+
|
218 |
+
fig.add_trace(go.Bar(
|
219 |
+
name='Energy Features',
|
220 |
+
x=[f"Energy {k}" for k in energy_data.keys()],
|
221 |
+
y=list(energy_data.values()),
|
222 |
+
marker_color='red'
|
223 |
+
))
|
224 |
+
|
225 |
+
# Add tempo indicator
|
226 |
+
fig.add_trace(go.Scatter(
|
227 |
+
name='Speech Rate (BPM)',
|
228 |
+
x=['Tempo'],
|
229 |
+
y=[features['tempo']],
|
230 |
+
mode='markers',
|
231 |
+
marker=dict(size=15, color='green')
|
232 |
+
))
|
233 |
+
|
234 |
+
# Configure layout for better visualization
|
235 |
+
fig.update_layout(
|
236 |
+
title='Voice Feature Analysis',
|
237 |
+
showlegend=True,
|
238 |
+
height=600,
|
239 |
+
barmode='group',
|
240 |
+
xaxis_title='Feature Type',
|
241 |
+
yaxis_title='Value',
|
242 |
+
template='plotly_white'
|
243 |
+
)
|
244 |
+
|
245 |
return fig.to_html(include_plotlyjs=True)
|
246 |
+
|
247 |
except Exception as e:
|
248 |
print(f"Error in create_feature_plots: {str(e)}")
|
249 |
return None
|
250 |
|
251 |
def create_emotion_plot(emotions):
|
252 |
+
"""Create visualization for emotion analysis results.
|
253 |
+
|
254 |
+
Args:
|
255 |
+
emotions (dict): Dictionary containing emotion scores
|
256 |
+
|
257 |
+
Returns:
|
258 |
+
str: HTML representation of the emotion plot or None if visualization fails
|
259 |
+
"""
|
260 |
try:
|
261 |
+
fig = go.Figure(data=[
|
262 |
+
go.Bar(
|
263 |
+
x=list(emotions.keys()),
|
264 |
+
y=list(emotions.values()),
|
265 |
+
marker_color=['#FF9999', '#66B2FF', '#99FF99',
|
266 |
+
'#FFCC99', '#FF99CC', '#99FFFF']
|
267 |
+
)
|
268 |
+
])
|
269 |
+
|
270 |
+
fig.update_layout(
|
271 |
+
title='Emotion Analysis',
|
272 |
+
xaxis_title='Emotion',
|
273 |
+
yaxis_title='Confidence Score',
|
274 |
+
yaxis_range=[0, 1],
|
275 |
+
template='plotly_white',
|
276 |
+
height=400
|
277 |
+
)
|
278 |
+
|
279 |
return fig.to_html(include_plotlyjs=True)
|
280 |
except Exception as e:
|
281 |
print(f"Error in create_emotion_plot: {str(e)}")
|
282 |
return None
|
283 |
|
284 |
def analyze_audio(audio_input):
|
285 |
+
"""Main function for analyzing audio input with comprehensive error handling.
|
286 |
+
|
287 |
+
This function coordinates the entire analysis pipeline including:
|
288 |
+
- Audio loading and validation
|
289 |
+
- Feature extraction
|
290 |
+
- Speech recognition
|
291 |
+
- Emotion analysis
|
292 |
+
- Visualization generation
|
293 |
|
294 |
+
Args:
|
295 |
+
audio_input: Audio file path or tuple containing audio data
|
296 |
+
|
297 |
+
Returns:
|
298 |
+
tuple: (analysis_summary, emotion_visualization, feature_visualization)
|
299 |
+
"""
|
300 |
try:
|
301 |
if audio_input is None:
|
302 |
return "Please provide an audio input", None, None
|
303 |
|
304 |
+
# Handle audio input and validate format
|
|
|
|
|
305 |
if isinstance(audio_input, tuple):
|
306 |
audio_path = audio_input[0]
|
307 |
else:
|
308 |
audio_path = audio_input
|
309 |
|
310 |
+
# Load and validate audio
|
311 |
+
waveform, sr = librosa.load(audio_path, sr=16000, duration=30)
|
312 |
+
duration = len(waveform) / sr
|
|
|
|
|
313 |
|
314 |
+
if duration < 0.5:
|
315 |
+
return "Audio too short. Please provide a recording of at least 0.5 seconds.", None, None
|
316 |
+
|
317 |
# Extract voice features
|
|
|
318 |
features = extract_prosodic_features(waveform, sr)
|
319 |
if features is None:
|
320 |
+
return "Error extracting voice features. Please try recording again.", None, None
|
321 |
|
322 |
+
# Create visualizations
|
|
|
323 |
feature_viz = create_feature_plots(features)
|
324 |
|
325 |
+
# Perform speech recognition
|
|
|
326 |
inputs = processor(waveform, sampling_rate=sr, return_tensors="pt").input_features
|
|
|
327 |
with torch.no_grad():
|
328 |
predicted_ids = whisper_model.generate(inputs)
|
329 |
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
330 |
|
331 |
# Analyze emotions
|
|
|
332 |
emotion_inputs = emotion_tokenizer(
|
333 |
transcription,
|
334 |
return_tensors="pt",
|
|
|
349 |
|
350 |
emotion_viz = create_emotion_plot(emotion_scores)
|
351 |
|
352 |
+
# Generate comprehensive analysis summary
|
353 |
summary = f"""Voice Analysis Summary:
|
354 |
|
355 |
Speech Content:
|
|
|
362 |
- Voice Energy: {features['energy_mean']:.4f}
|
363 |
|
364 |
Dominant Emotion: {max(emotion_scores.items(), key=lambda x: x[1])[0]}
|
365 |
+
Emotion Confidence: {max(emotion_scores.values()):.2%}
|
366 |
+
|
367 |
+
Recording Duration: {duration:.2f} seconds
|
368 |
"""
|
369 |
|
370 |
return summary, emotion_viz, feature_viz
|
|
|
379 |
print("===== Application Startup =====")
|
380 |
if not load_models():
|
381 |
raise RuntimeError("Failed to load required models")
|
|
|
382 |
|
383 |
+
# Create Gradio interface with enhanced user guidance
|
384 |
demo = gr.Interface(
|
385 |
fn=analyze_audio,
|
386 |
inputs=gr.Audio(
|
387 |
sources=["microphone", "upload"],
|
388 |
type="filepath",
|
389 |
+
label="Audio Input (Recommended: 1-5 seconds of clear speech)"
|
390 |
),
|
391 |
outputs=[
|
392 |
gr.Textbox(label="Analysis Summary", lines=10),
|
|
|
395 |
],
|
396 |
title="Voice Analysis System",
|
397 |
description="""
|
398 |
+
This application provides detailed voice analysis through multiple components:
|
399 |
|
400 |
1. Voice Features:
|
401 |
+
- Pitch analysis (fundamental frequency and variation)
|
402 |
+
- Energy patterns (volume and intensity)
|
403 |
+
- Speech rate (words per minute)
|
404 |
+
- Voice quality metrics
|
405 |
|
406 |
2. Emotional Content:
|
407 |
+
- Emotion detection (6 basic emotions)
|
408 |
+
- Emotional intensity analysis
|
409 |
|
410 |
3. Speech Content:
|
411 |
+
- Accurate text transcription
|
412 |
|
413 |
+
For optimal results:
|
414 |
+
- Record in a quiet environment
|
415 |
+
- Speak clearly and naturally
|
416 |
+
- Keep recordings between 1-5 seconds
|
417 |
+
- Maintain consistent volume
|
418 |
+
|
419 |
Upload an audio file or record directly through your microphone.
|
420 |
+
"""
|
|
|
|
|
421 |
)
|
422 |
|
|
|
|
|
423 |
# Launch the interface
|
424 |
if __name__ == "__main__":
|
|
|
425 |
demo.launch()
|
426 |
+
|
427 |
except Exception as e:
|
428 |
print(f"Error during application startup: {str(e)}")
|
429 |
raise
|