Spaces:
Sleeping
Sleeping
iohanngrig
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -8,12 +8,22 @@ from langchain.chains import LLMChain
|
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from transformers import pipeline
|
11 |
-
from utils import css_code
|
12 |
|
13 |
HUGGINGFACE_API_TOKEN = st.secrets["HUGGINGFACE_API_TOKEN"]
|
14 |
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
15 |
MODEL = st.secrets["MODEL2"]
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
def progress_bar(amount_of_time: int) -> Any:
|
19 |
"""
|
@@ -31,7 +41,6 @@ def progress_bar(amount_of_time: int) -> Any:
|
|
31 |
time.sleep(1)
|
32 |
my_bar.empty()
|
33 |
|
34 |
-
|
35 |
def generate_text_from_image(url: str) -> str:
|
36 |
"""
|
37 |
A function that uses the blip model to generate text from an image.
|
@@ -39,14 +48,11 @@ def generate_text_from_image(url: str) -> str:
|
|
39 |
:return: text: generated text from the image
|
40 |
"""
|
41 |
image_to_text: Any = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
42 |
-
|
43 |
generated_text: str = image_to_text(url)[0]["generated_text"]
|
44 |
-
|
45 |
print(f"IMAGE INPUT: {url}")
|
46 |
print(f"GENERATED TEXT OUTPUT: {generated_text}")
|
47 |
return generated_text
|
48 |
|
49 |
-
|
50 |
def generate_story_from_text(scenario: str) -> str:
|
51 |
"""
|
52 |
A function using a prompt template and GPT to generate a short story. LangChain is also
|
@@ -57,24 +63,18 @@ def generate_story_from_text(scenario: str) -> str:
|
|
57 |
prompt_template: str = f"""
|
58 |
You are a story teller;
|
59 |
You can generate a long story based on a simple narrative, the story should be no more than 100 words and have more than 30 words;
|
60 |
-
|
61 |
CONTEXT: {scenario}
|
62 |
STORY:
|
63 |
"""
|
64 |
-
|
65 |
prompt: PromptTemplate = PromptTemplate(template=prompt_template, input_variables=["scenario"])
|
66 |
-
|
67 |
llm: Any = ChatOpenAI(model_name=MODEL, temperature=1)
|
68 |
-
|
69 |
story_llm: Any = LLMChain(llm=llm, prompt=prompt, verbose=True)
|
70 |
-
|
71 |
generated_story: str = story_llm.predict(scenario=scenario)
|
72 |
-
|
73 |
print(f"TEXT INPUT: {scenario}")
|
74 |
print(f"GENERATED STORY OUTPUT: {generated_story}")
|
75 |
return generated_story
|
76 |
|
77 |
-
|
78 |
def generate_speech_from_text(message: str) -> Any:
|
79 |
"""
|
80 |
A function using the ESPnet text to speech model from HuggingFace
|
@@ -96,16 +96,13 @@ def generate_speech_from_text(message: str) -> Any:
|
|
96 |
mime='flac',
|
97 |
)
|
98 |
|
99 |
-
|
100 |
def main() -> None:
|
101 |
"""
|
102 |
Main function
|
103 |
:return: None
|
104 |
"""
|
105 |
st.set_page_config(page_title="Image to audio story", page_icon="img/logo.png", layout="wide")
|
106 |
-
|
107 |
st.markdown(css_code, unsafe_allow_html=True)
|
108 |
-
|
109 |
with st.sidebar:
|
110 |
st.image("img/kandinsky.jpg")
|
111 |
#st.write("---")
|
@@ -124,14 +121,12 @@ def main() -> None:
|
|
124 |
progress_bar(100)
|
125 |
scenario: str = generate_text_from_image(uploaded_file.name)
|
126 |
story: str = generate_story_from_text(scenario)
|
127 |
-
|
128 |
-
|
129 |
with st.expander("Generated scenario"):
|
130 |
st.write(scenario)
|
131 |
with st.expander("Generated story"):
|
132 |
st.write(story)
|
133 |
-
|
134 |
-
#st.audio("generated_audio.flac")
|
135 |
|
136 |
|
137 |
if __name__ == "__main__":
|
|
|
8 |
from langchain.chat_models import ChatOpenAI
|
9 |
from langchain.prompts import PromptTemplate
|
10 |
from transformers import pipeline
|
|
|
11 |
|
12 |
HUGGINGFACE_API_TOKEN = st.secrets["HUGGINGFACE_API_TOKEN"]
|
13 |
OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
|
14 |
MODEL = st.secrets["MODEL2"]
|
15 |
|
16 |
+
css_code = """
|
17 |
+
<style>
|
18 |
+
section[data-testid="stSidebar"] > div > div:nth-child(2) {
|
19 |
+
padding-top: 0.75rem !important;
|
20 |
+
}
|
21 |
+
|
22 |
+
section.main > div {
|
23 |
+
padding-top: 64px;
|
24 |
+
}
|
25 |
+
</style>
|
26 |
+
"""
|
27 |
|
28 |
def progress_bar(amount_of_time: int) -> Any:
|
29 |
"""
|
|
|
41 |
time.sleep(1)
|
42 |
my_bar.empty()
|
43 |
|
|
|
44 |
def generate_text_from_image(url: str) -> str:
|
45 |
"""
|
46 |
A function that uses the blip model to generate text from an image.
|
|
|
48 |
:return: text: generated text from the image
|
49 |
"""
|
50 |
image_to_text: Any = pipeline("image-to-text", model="nlpconnect/vit-gpt2-image-captioning")
|
|
|
51 |
generated_text: str = image_to_text(url)[0]["generated_text"]
|
|
|
52 |
print(f"IMAGE INPUT: {url}")
|
53 |
print(f"GENERATED TEXT OUTPUT: {generated_text}")
|
54 |
return generated_text
|
55 |
|
|
|
56 |
def generate_story_from_text(scenario: str) -> str:
|
57 |
"""
|
58 |
A function using a prompt template and GPT to generate a short story. LangChain is also
|
|
|
63 |
prompt_template: str = f"""
|
64 |
You are a story teller;
|
65 |
You can generate a long story based on a simple narrative, the story should be no more than 100 words and have more than 30 words;
|
66 |
+
|
67 |
CONTEXT: {scenario}
|
68 |
STORY:
|
69 |
"""
|
|
|
70 |
prompt: PromptTemplate = PromptTemplate(template=prompt_template, input_variables=["scenario"])
|
|
|
71 |
llm: Any = ChatOpenAI(model_name=MODEL, temperature=1)
|
|
|
72 |
story_llm: Any = LLMChain(llm=llm, prompt=prompt, verbose=True)
|
|
|
73 |
generated_story: str = story_llm.predict(scenario=scenario)
|
|
|
74 |
print(f"TEXT INPUT: {scenario}")
|
75 |
print(f"GENERATED STORY OUTPUT: {generated_story}")
|
76 |
return generated_story
|
77 |
|
|
|
78 |
def generate_speech_from_text(message: str) -> Any:
|
79 |
"""
|
80 |
A function using the ESPnet text to speech model from HuggingFace
|
|
|
96 |
mime='flac',
|
97 |
)
|
98 |
|
|
|
99 |
def main() -> None:
|
100 |
"""
|
101 |
Main function
|
102 |
:return: None
|
103 |
"""
|
104 |
st.set_page_config(page_title="Image to audio story", page_icon="img/logo.png", layout="wide")
|
|
|
105 |
st.markdown(css_code, unsafe_allow_html=True)
|
|
|
106 |
with st.sidebar:
|
107 |
st.image("img/kandinsky.jpg")
|
108 |
#st.write("---")
|
|
|
121 |
progress_bar(100)
|
122 |
scenario: str = generate_text_from_image(uploaded_file.name)
|
123 |
story: str = generate_story_from_text(scenario)
|
124 |
+
generate_speech_from_text(story)
|
|
|
125 |
with st.expander("Generated scenario"):
|
126 |
st.write(scenario)
|
127 |
with st.expander("Generated story"):
|
128 |
st.write(story)
|
129 |
+
st.audio("generated_audio.flac")
|
|
|
130 |
|
131 |
|
132 |
if __name__ == "__main__":
|