Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PyPDF2 import PdfReader
|
3 |
+
import streamlit as st
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain_community.vectorstores.faiss import FAISS
|
6 |
+
from langchain.chains.question_answering import load_qa_chain
|
7 |
+
from langchain.prompts import PromptTemplate
|
8 |
+
from langchain_google_genai import GoogleGenerativeAIEmbeddings
|
9 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
10 |
+
import google.generativeai as genai
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
load_dotenv()
|
14 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY"))
|
15 |
+
|
16 |
+
# Function to extract text from PDFs
|
17 |
+
def extract_pdf_text(pdfs):
|
18 |
+
all_text = ""
|
19 |
+
for pdf in pdfs:
|
20 |
+
pdf_reader = PdfReader(pdf)
|
21 |
+
for page in pdf_reader.pages:
|
22 |
+
all_text += page.extract_text()
|
23 |
+
return all_text
|
24 |
+
|
25 |
+
# Function to split text into chunks
|
26 |
+
def split_text_into_chunks(text):
|
27 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=12000, chunk_overlap=1200)
|
28 |
+
text_chunks = splitter.split_text(text)
|
29 |
+
return text_chunks
|
30 |
+
|
31 |
+
# Function to create vector store
|
32 |
+
def create_vector_store(chunks):
|
33 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
34 |
+
vector_store = FAISS.from_texts(chunks, embedding=embeddings)
|
35 |
+
vector_store.save_local("faiss_index")
|
36 |
+
|
37 |
+
# Function to setup conversation chain for QA
|
38 |
+
def setup_conversation_chain(template):
|
39 |
+
model = ChatGoogleGenerativeAI(model="gemini-pro", temperature=0.3)
|
40 |
+
prompt = PromptTemplate(template=template, input_variables=["context", "question"])
|
41 |
+
chain = load_qa_chain(model, chain_type="stuff", prompt=prompt)
|
42 |
+
return chain
|
43 |
+
|
44 |
+
# Function to handle user input based on selected mode
|
45 |
+
def handle_user_input(mode, user_question=None):
|
46 |
+
embeddings = GoogleGenerativeAIEmbeddings(model="models/embedding-001")
|
47 |
+
indexed_data = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True)
|
48 |
+
docs = indexed_data.similarity_search(user_question)
|
49 |
+
|
50 |
+
chain = setup_conversation_chain(prompt_template[mode])
|
51 |
+
response = chain({"input_documents": docs, "question": user_question}, return_only_outputs=True)
|
52 |
+
return response["output_text"]
|
53 |
+
|
54 |
+
# Prompt templates for each mode
|
55 |
+
prompt_template = {
|
56 |
+
"chat":"""
|
57 |
+
Your alias is Neural-PDF. Your task is to provide a thorough response based on the given context, ensuring all relevant details are included.
|
58 |
+
If the requested information isn't available, simply state, "answer not available in context," then answer based on your understanding, connecting with the context.
|
59 |
+
Don't provide incorrect information.\n\n
|
60 |
+
Context: \n {context}?\n
|
61 |
+
Question: \n {question}\n
|
62 |
+
|
63 |
+
Answer:
|
64 |
+
""",
|
65 |
+
"quiz":"""
|
66 |
+
Your alias is Neural-PDF. Your task is to generate multiple choice questions for quiz based on the given context and requested number of questions, ensuring all relevant details are included.
|
67 |
+
If the requested information isn't available, simply state, "answer not available in context," then answer based on your understanding, connecting with the context.
|
68 |
+
Don't provide incorrect information.\n\n
|
69 |
+
Context: \n {context}?\n
|
70 |
+
Question: \n {question}\n
|
71 |
+
|
72 |
+
Answer:
|
73 |
+
""",
|
74 |
+
"long":"""
|
75 |
+
Your alias is Neural-PDF. Your task is to generate long answer-type questions based on the given context and requested number of questions, ensuring all relevant details are included.
|
76 |
+
If the requested information isn't available, simply state, "answer not available in context," then answer based on your understanding, connecting with the context.
|
77 |
+
Don't provide incorrect information.\n\n
|
78 |
+
Context: \n {context}?\n
|
79 |
+
Question: \n {question}\n
|
80 |
+
|
81 |
+
Answer:
|
82 |
+
""",
|
83 |
+
}
|
84 |
+
|
85 |
+
|
86 |
+
# Streamlit app
|
87 |
+
def main():
|
88 |
+
if "conversation" not in st.session_state:
|
89 |
+
st.session_state.conversation = []
|
90 |
+
if "mode" not in st.session_state:
|
91 |
+
st.session_state.mode=""
|
92 |
+
if "file_upload" not in st.session_state:
|
93 |
+
st.session_state.file_upload=False
|
94 |
+
|
95 |
+
st.set_page_config(page_title="NeuralPDF", page_icon=":page_with_curl:", initial_sidebar_state="expanded", layout="wide")
|
96 |
+
st.title("NeuralPDF: Interactive PDF Chat using AI 🤖")
|
97 |
+
|
98 |
+
# sidebar
|
99 |
+
files = st.sidebar.file_uploader("Upload one or more PDF files", type="pdf", accept_multiple_files=True)
|
100 |
+
if st.sidebar.button("Submit"):
|
101 |
+
if files:
|
102 |
+
with st.spinner("Processing..."):
|
103 |
+
raw_text = extract_pdf_text(files)
|
104 |
+
text_chunks = split_text_into_chunks(raw_text)
|
105 |
+
create_vector_store(text_chunks)
|
106 |
+
st.sidebar.success("Processing done!")
|
107 |
+
st.session_state.file_upload=True
|
108 |
+
|
109 |
+
# mode of chat
|
110 |
+
with st.sidebar:
|
111 |
+
if st.session_state.file_upload:
|
112 |
+
# st.write('<style>div.row-widget.stRadio > div{flex-direction:row;justify-content: center;} </style>', unsafe_allow_html=True)
|
113 |
+
# st.write('<style>div.st-bf{flex-direction:column;} div.st-ag{font-weight:bold;padding-left:2px;}</style>', unsafe_allow_html=True)
|
114 |
+
modes={"Chat Conversation":"chat", "Quiz & MCQs":"quiz", "Long-Answer Questions":"long"}
|
115 |
+
choose_mode = st.radio("", list(modes.keys()), index=0)
|
116 |
+
st.session_state.mode=modes[choose_mode]
|
117 |
+
|
118 |
+
if st.session_state.file_upload:
|
119 |
+
# keep history of chat
|
120 |
+
for dialogue in st.session_state.conversation:
|
121 |
+
with st.chat_message(dialogue["role"]):
|
122 |
+
if st.session_state.mode != "chat" and dialogue["role"] == "assistant":
|
123 |
+
st.markdown(dialogue["content"])
|
124 |
+
with st.expander("Answer"):
|
125 |
+
st.markdown(dialogue["answer"])
|
126 |
+
else: st.markdown(dialogue["content"])
|
127 |
+
|
128 |
+
# handle conversation
|
129 |
+
if prompt := st.chat_input("Type your question here"):
|
130 |
+
# handle user side
|
131 |
+
with st.chat_message("user"): st.markdown(prompt)
|
132 |
+
st.session_state.conversation.append({"role":"user", "content":prompt, "answer":""})
|
133 |
+
# handle assistant side
|
134 |
+
with st.chat_message("assistant"):
|
135 |
+
response=handle_user_input(st.session_state.mode, prompt)
|
136 |
+
answer=""
|
137 |
+
if st.session_state.mode != "chat":
|
138 |
+
answer = handle_user_input("chat", response)
|
139 |
+
st.markdown(response)
|
140 |
+
with st.expander("Answer"):
|
141 |
+
st.markdown(answer)
|
142 |
+
else: st.markdown(response)
|
143 |
+
st.session_state.conversation.append({"role":"assistant", "content":response, "answer":answer})
|
144 |
+
|
145 |
+
|
146 |
+
# Launch the app
|
147 |
+
if __name__ == "__main__":
|
148 |
+
main()
|