|
import gradio as gr |
|
import numpy as np |
|
from math import ceil |
|
from huggingface_hub import from_pretrained_keras |
|
|
|
model = from_pretrained_keras("GIanlucaRub/doubleResFinal") |
|
def double_res(input_image): |
|
input_height = input_image.shape[0] |
|
input_width = input_image.shape[1] |
|
height = ceil(input_height/128) |
|
width = ceil(input_width/128) |
|
expanded_input_image = np.zeros((128*height, 128*width, 3), dtype=np.uint8) |
|
np.copyto(expanded_input_image[0:input_height, 0:input_width], input_image) |
|
|
|
output_image = np.zeros((128*height*2, 128*width*2, 3), dtype=np.float32) |
|
|
|
to_predict = [] |
|
for i in range(height): |
|
for j in range(width): |
|
temp_slice = expanded_input_image[i * |
|
128:(i+1)*128, j*128:(j+1)*128]/255 |
|
to_predict.append(temp_slice) |
|
|
|
|
|
|
|
for i in range(height): |
|
for j in range(width): |
|
if i != 0 and j != 0 and i != height-1 and j != width-1: |
|
right_slice = expanded_input_image[i * |
|
128:(i+1)*128, (j+1)*128-64:(j+1)*128+64]/255 |
|
to_predict.append(right_slice) |
|
|
|
|
|
left_slice = expanded_input_image[i * |
|
128:(i+1)*128, j*128-64:(j)*128+64]/255 |
|
to_predict.append(left_slice) |
|
|
|
|
|
upper_slice = expanded_input_image[( |
|
i+1)*128-64:(i+1)*128+64, j*128:(j+1)*128]/255 |
|
to_predict.append(upper_slice) |
|
|
|
|
|
lower_slice = expanded_input_image[i * |
|
128-64:i*128+64, j*128:(j+1)*128]/255 |
|
to_predict.append(lower_slice) |
|
|
|
|
|
lower_right_slice = expanded_input_image[i * |
|
128-64:i*128+64, (j+1)*128-64:(j+1)*128+64]/255 |
|
to_predict.append(lower_right_slice) |
|
|
|
lower_left_slice = expanded_input_image[i * |
|
128-64:i*128+64, j*128-64:j*128+64]/255 |
|
to_predict.append(lower_left_slice) |
|
|
|
|
|
completed = False |
|
n = 16 |
|
while not completed: |
|
try: |
|
print("attempting with "+ str(n)) |
|
predicted = model.predict(np.array(to_predict),batch_size = n) |
|
completed = True |
|
print("completed with "+ str(n)) |
|
except: |
|
print("attempt with " + str(n) + " failed") |
|
n += -1 |
|
if n <= 0: |
|
n = 1 |
|
counter = 0 |
|
for i in range(height): |
|
for j in range(width): |
|
np.copyto(output_image[i*256:(i+1)*256, j * |
|
256:(j+1)*256], predicted[counter]) |
|
counter+=1 |
|
|
|
|
|
|
|
for i in range(height): |
|
for j in range(width): |
|
if i != 0 and j != 0 and i != height-1 and j != width-1: |
|
right_upsampled_slice = predicted[counter] |
|
counter+=1 |
|
resized_right_slice = right_upsampled_slice[64:192, 64:192] |
|
np.copyto(output_image[i*256+64:(i+1)*256-64, |
|
(j+1)*256-64:(j+1)*256+64], resized_right_slice) |
|
|
|
|
|
|
|
|
|
left_upsampled_slice = predicted[counter] |
|
counter+=1 |
|
resized_left_slice = left_upsampled_slice[64:192, 64:192] |
|
np.copyto(output_image[i*256+64:(i+1)*256-64, |
|
j*256-64:j*256+64], resized_left_slice) |
|
|
|
|
|
|
|
upper_upsampled_slice = predicted[counter] |
|
counter+=1 |
|
resized_upper_slice = upper_upsampled_slice[64:192, 64:192] |
|
np.copyto(output_image[(i+1)*256-64:(i+1)*256+64, |
|
j*256+64:(j+1)*256-64], resized_upper_slice) |
|
|
|
|
|
|
|
lower_upsampled_slice = predicted[counter] |
|
counter+=1 |
|
resized_lower_slice = lower_upsampled_slice[64:192, 64:192] |
|
np.copyto(output_image[i*256-64:i*256+64, |
|
j*256+64:(j+1)*256-64], resized_lower_slice) |
|
|
|
|
|
|
|
lower_right_upsampled_slice = predicted[counter] |
|
counter+=1 |
|
resized_lower_right_slice = lower_right_upsampled_slice[64:192, 64:192] |
|
np.copyto(output_image[i*256-64:i*256+64, (j+1) |
|
* 256-64:(j+1)*256+64], resized_lower_right_slice) |
|
|
|
|
|
lower_left_upsampled_slice = predicted[counter] |
|
counter+=1 |
|
resized_lower_left_slice = lower_left_upsampled_slice[64:192, 64:192] |
|
np.copyto( |
|
output_image[i*256-64:i*256+64, j*256-64:j*256+64], resized_lower_left_slice) |
|
|
|
resized_output_image = output_image[0:input_height*2, 0:input_width*2] |
|
return resized_output_image |
|
|
|
demo = gr.Interface( |
|
fn=double_res, |
|
title="Double picture resolution", |
|
description="Upload a picture and get the horizontal and vertical resolution doubled (4x pixels)", |
|
allow_flagging="never", |
|
inputs=[ |
|
gr.inputs.Image(type="numpy") |
|
], |
|
outputs=gr.Image(type="numpy")) |
|
|
|
demo.launch() |
|
|
|
|