File size: 4,125 Bytes
5548515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
from torch.nn import functional as F
from .SubLayers import MultiHeadAttention, PositionwiseFeedForward


class FFTBlock(torch.nn.Module):
    """FFT Block"""

    def __init__(self, d_model, n_head, d_k, d_v, d_inner, kernel_size, dropout=0.1):
        super(FFTBlock, self).__init__()
        self.slf_attn = MultiHeadAttention(n_head, d_model, d_k, d_v, dropout=dropout)
        self.pos_ffn = PositionwiseFeedForward(
            d_model, d_inner, kernel_size, dropout=dropout
        )

    def forward(self, enc_input, mask=None, slf_attn_mask=None):
        enc_output, enc_slf_attn = self.slf_attn(
            enc_input, enc_input, enc_input, mask=slf_attn_mask
        )
        enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0)

        enc_output = self.pos_ffn(enc_output)
        enc_output = enc_output.masked_fill(mask.unsqueeze(-1), 0)

        return enc_output, enc_slf_attn


class ConvNorm(torch.nn.Module):
    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size=1,
        stride=1,
        padding=None,
        dilation=1,
        bias=True,
        w_init_gain="linear",
    ):
        super(ConvNorm, self).__init__()

        if padding is None:
            assert kernel_size % 2 == 1
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            bias=bias,
        )

    def forward(self, signal):
        conv_signal = self.conv(signal)

        return conv_signal


class PostNet(nn.Module):
    """
    PostNet: Five 1-d convolution with 512 channels and kernel size 5
    """

    def __init__(
        self,
        n_mel_channels=80,
        postnet_embedding_dim=512,
        postnet_kernel_size=5,
        postnet_n_convolutions=5,
    ):
        super(PostNet, self).__init__()
        self.convolutions = nn.ModuleList()

        self.convolutions.append(
            nn.Sequential(
                ConvNorm(
                    n_mel_channels,
                    postnet_embedding_dim,
                    kernel_size=postnet_kernel_size,
                    stride=1,
                    padding=int((postnet_kernel_size - 1) / 2),
                    dilation=1,
                    w_init_gain="tanh",
                ),
                nn.BatchNorm1d(postnet_embedding_dim),
            )
        )

        for i in range(1, postnet_n_convolutions - 1):
            self.convolutions.append(
                nn.Sequential(
                    ConvNorm(
                        postnet_embedding_dim,
                        postnet_embedding_dim,
                        kernel_size=postnet_kernel_size,
                        stride=1,
                        padding=int((postnet_kernel_size - 1) / 2),
                        dilation=1,
                        w_init_gain="tanh",
                    ),
                    nn.BatchNorm1d(postnet_embedding_dim),
                )
            )

        self.convolutions.append(
            nn.Sequential(
                ConvNorm(
                    postnet_embedding_dim,
                    n_mel_channels,
                    kernel_size=postnet_kernel_size,
                    stride=1,
                    padding=int((postnet_kernel_size - 1) / 2),
                    dilation=1,
                    w_init_gain="linear",
                ),
                nn.BatchNorm1d(n_mel_channels),
            )
        )

    def forward(self, x):
        x = x.contiguous().transpose(1, 2)

        for i in range(len(self.convolutions) - 1):
            x = F.dropout(torch.tanh(self.convolutions[i](x)), 0.5, self.training)
        x = F.dropout(self.convolutions[-1](x), 0.5, self.training)

        x = x.contiguous().transpose(1, 2)
        return x