File size: 3,969 Bytes
5548515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).

# ## Citations

# ```bibtex
# @inproceedings{yao2021wenet,
#   title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
#   author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
#   booktitle={Proc. Interspeech},
#   year={2021},
#   address={Brno, Czech Republic },
#   organization={IEEE}
# }

# @article{zhang2022wenet,
#   title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
#   author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
#   journal={arXiv preprint arXiv:2203.15455},
#   year={2022}
# }
#

import logging
import os
import re

import yaml
import torch
from collections import OrderedDict

import datetime


def load_checkpoint(model: torch.nn.Module, path: str) -> dict:
    if torch.cuda.is_available():
        logging.info("Checkpoint: loading from checkpoint %s for GPU" % path)
        checkpoint = torch.load(path)
    else:
        logging.info("Checkpoint: loading from checkpoint %s for CPU" % path)
        checkpoint = torch.load(path, map_location="cpu")
    model.load_state_dict(checkpoint, strict=False)
    info_path = re.sub(".pt$", ".yaml", path)
    configs = {}
    if os.path.exists(info_path):
        with open(info_path, "r") as fin:
            configs = yaml.load(fin, Loader=yaml.FullLoader)
    return configs


def save_checkpoint(model: torch.nn.Module, path: str, infos=None):
    """
    Args:
        infos (dict or None): any info you want to save.
    """
    logging.info("Checkpoint: save to checkpoint %s" % path)
    if isinstance(model, torch.nn.DataParallel):
        state_dict = model.module.state_dict()
    elif isinstance(model, torch.nn.parallel.DistributedDataParallel):
        state_dict = model.module.state_dict()
    else:
        state_dict = model.state_dict()
    torch.save(state_dict, path)
    info_path = re.sub(".pt$", ".yaml", path)
    if infos is None:
        infos = {}
    infos["save_time"] = datetime.datetime.now().strftime("%d/%m/%Y %H:%M:%S")
    with open(info_path, "w") as fout:
        data = yaml.dump(infos)
        fout.write(data)


def filter_modules(model_state_dict, modules):
    new_mods = []
    incorrect_mods = []
    mods_model = model_state_dict.keys()
    for mod in modules:
        if any(key.startswith(mod) for key in mods_model):
            new_mods += [mod]
        else:
            incorrect_mods += [mod]
    if incorrect_mods:
        logging.warning(
            "module(s) %s don't match or (partially match) "
            "available modules in model.",
            incorrect_mods,
        )
        logging.warning("for information, the existing modules in model are:")
        logging.warning("%s", mods_model)

    return new_mods


def load_trained_modules(model: torch.nn.Module, args: None):
    # Load encoder modules with pre-trained model(s).
    enc_model_path = args.enc_init
    enc_modules = args.enc_init_mods
    main_state_dict = model.state_dict()
    logging.warning("model(s) found for pre-initialization")
    if os.path.isfile(enc_model_path):
        logging.info("Checkpoint: loading from checkpoint %s for CPU" % enc_model_path)
        model_state_dict = torch.load(enc_model_path, map_location="cpu")
        modules = filter_modules(model_state_dict, enc_modules)
        partial_state_dict = OrderedDict()
        for key, value in model_state_dict.items():
            if any(key.startswith(m) for m in modules):
                partial_state_dict[key] = value
        main_state_dict.update(partial_state_dict)
    else:
        logging.warning("model was not found : %s", enc_model_path)

    model.load_state_dict(main_state_dict)
    configs = {}
    return configs