Spaces:
Sleeping
Sleeping
File size: 7,397 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 |
# This module is from [WeNet](https://github.com/wenet-e2e/wenet).
# ## Citations
# ```bibtex
# @inproceedings{yao2021wenet,
# title={WeNet: Production oriented Streaming and Non-streaming End-to-End Speech Recognition Toolkit},
# author={Yao, Zhuoyuan and Wu, Di and Wang, Xiong and Zhang, Binbin and Yu, Fan and Yang, Chao and Peng, Zhendong and Chen, Xiaoyu and Xie, Lei and Lei, Xin},
# booktitle={Proc. Interspeech},
# year={2021},
# address={Brno, Czech Republic },
# organization={IEEE}
# }
# @article{zhang2022wenet,
# title={WeNet 2.0: More Productive End-to-End Speech Recognition Toolkit},
# author={Zhang, Binbin and Wu, Di and Peng, Zhendong and Song, Xingchen and Yao, Zhuoyuan and Lv, Hang and Xie, Lei and Yang, Chao and Pan, Fuping and Niu, Jianwei},
# journal={arXiv preprint arXiv:2203.15455},
# year={2022}
# }
#
import logging
from contextlib import nullcontext
# if your python version < 3.7 use the below one
# from contextlib import suppress as nullcontext
import torch
from torch.nn.utils import clip_grad_norm_
class Executor:
def __init__(self):
self.step = 0
def train(
self, model, optimizer, scheduler, data_loader, device, writer, args, scaler
):
"""Train one epoch"""
model.train()
clip = args.get("grad_clip", 50.0)
log_interval = args.get("log_interval", 10)
rank = args.get("rank", 0)
epoch = args.get("epoch", 0)
accum_grad = args.get("accum_grad", 1)
is_distributed = args.get("is_distributed", True)
use_amp = args.get("use_amp", False)
logging.info(
"using accumulate grad, new batch size is {} times"
" larger than before".format(accum_grad)
)
if use_amp:
assert scaler is not None
# A context manager to be used in conjunction with an instance of
# torch.nn.parallel.DistributedDataParallel to be able to train
# with uneven inputs across participating processes.
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_context = model.join
else:
model_context = nullcontext
num_seen_utts = 0
with model_context():
for batch_idx, batch in enumerate(data_loader):
key, feats, target, feats_lengths, target_lengths = batch
feats = feats.to(device)
target = target.to(device)
feats_lengths = feats_lengths.to(device)
target_lengths = target_lengths.to(device)
num_utts = target_lengths.size(0)
if num_utts == 0:
continue
context = None
# Disable gradient synchronizations across DDP processes.
# Within this context, gradients will be accumulated on module
# variables, which will later be synchronized.
if is_distributed and batch_idx % accum_grad != 0:
context = model.no_sync
# Used for single gpu training and DDP gradient synchronization
# processes.
else:
context = nullcontext
with context():
# autocast context
# The more details about amp can be found in
# https://pytorch.org/docs/stable/notes/amp_examples.html
with torch.cuda.amp.autocast(scaler is not None):
loss_dict = model(feats, feats_lengths, target, target_lengths)
loss = loss_dict["loss"] / accum_grad
if use_amp:
scaler.scale(loss).backward()
else:
loss.backward()
num_seen_utts += num_utts
if batch_idx % accum_grad == 0:
if rank == 0 and writer is not None:
writer.add_scalar("train_loss", loss, self.step)
# Use mixed precision training
if use_amp:
scaler.unscale_(optimizer)
grad_norm = clip_grad_norm_(model.parameters(), clip)
# Must invoke scaler.update() if unscale_() is used in
# the iteration to avoid the following error:
# RuntimeError: unscale_() has already been called
# on this optimizer since the last update().
# We don't check grad here since that if the gradient
# has inf/nan values, scaler.step will skip
# optimizer.step().
scaler.step(optimizer)
scaler.update()
else:
grad_norm = clip_grad_norm_(model.parameters(), clip)
if torch.isfinite(grad_norm):
optimizer.step()
optimizer.zero_grad()
scheduler.step()
self.step += 1
if batch_idx % log_interval == 0:
lr = optimizer.param_groups[0]["lr"]
log_str = "TRAIN Batch {}/{} loss {:.6f} ".format(
epoch, batch_idx, loss.item() * accum_grad
)
for name, value in loss_dict.items():
if name != "loss" and value is not None:
log_str += "{} {:.6f} ".format(name, value.item())
log_str += "lr {:.8f} rank {}".format(lr, rank)
logging.debug(log_str)
def cv(self, model, data_loader, device, args):
"""Cross validation on"""
model.eval()
rank = args.get("rank", 0)
epoch = args.get("epoch", 0)
log_interval = args.get("log_interval", 10)
# in order to avoid division by 0
num_seen_utts = 1
total_loss = 0.0
with torch.no_grad():
for batch_idx, batch in enumerate(data_loader):
key, feats, target, feats_lengths, target_lengths = batch
feats = feats.to(device)
target = target.to(device)
feats_lengths = feats_lengths.to(device)
target_lengths = target_lengths.to(device)
num_utts = target_lengths.size(0)
if num_utts == 0:
continue
loss_dict = model(feats, feats_lengths, target, target_lengths)
loss = loss_dict["loss"]
if torch.isfinite(loss):
num_seen_utts += num_utts
total_loss += loss.item() * num_utts
if batch_idx % log_interval == 0:
log_str = "CV Batch {}/{} loss {:.6f} ".format(
epoch, batch_idx, loss.item()
)
for name, value in loss_dict.items():
if name != "loss" and value is not None:
log_str += "{} {:.6f} ".format(name, value.item())
log_str += "history loss {:.6f}".format(total_loss / num_seen_utts)
log_str += " rank {}".format(rank)
logging.debug(log_str)
return total_loss, num_seen_utts
|