Spaces:
Sleeping
Sleeping
File size: 4,755 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import os
from collections import defaultdict
from tqdm import tqdm
def get_uids_and_wav_paths(cfg, dataset, dataset_type):
assert dataset == "bigdata"
dataset_dir = os.path.join(
cfg.OUTPUT_PATH,
"preprocess/{}_version".format(cfg.PREPROCESS_VERSION),
"bigdata/{}".format(cfg.BIGDATA_VERSION),
)
dataset_file = os.path.join(
dataset_dir, "{}.json".format(dataset_type.split("_")[-1])
)
with open(dataset_file, "r") as f:
utterances = json.load(f)
# Uids
uids = [u["Uid"] for u in utterances]
# Wav paths
wav_paths = [u["Path"] for u in utterances]
return uids, wav_paths
def take_duration(utt):
return utt["Duration"]
def main(output_path, cfg):
datasets = cfg.dataset
print("-" * 10)
print("Preparing samples for bigdata...")
print("Including: \n{}\n".format("\n".join(datasets)))
datasets.sort()
bigdata_version = "_".join(datasets)
save_dir = os.path.join(output_path, bigdata_version)
os.makedirs(save_dir, exist_ok=True)
train_output_file = os.path.join(save_dir, "train.json")
test_output_file = os.path.join(save_dir, "test.json")
singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id)
utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk)
utt2singer = open(utt2singer_file, "a+")
# We select songs of standard samples as test songs
train = []
test = []
train_total_duration = 0
test_total_duration = 0
# Singer unique names
singer_names = set()
for dataset in datasets:
dataset_path = os.path.join(output_path, dataset)
train_json = os.path.join(dataset_path, "train.json")
test_json = os.path.join(dataset_path, "test.json")
with open(train_json, "r", encoding="utf-8") as f:
train_utterances = json.load(f)
with open(test_json, "r", encoding="utf-8") as f:
test_utterances = json.load(f)
for utt in tqdm(train_utterances):
train.append(utt)
train_total_duration += utt["Duration"]
singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"]))
utt2singer.write(
"{}_{}\t{}_{}\n".format(
utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"]
)
)
for utt in test_utterances:
test.append(utt)
test_total_duration += utt["Duration"]
singer_names.add("{}_{}".format(utt["Dataset"], utt["Singer"]))
utt2singer.write(
"{}_{}\t{}_{}\n".format(
utt["Dataset"], utt["Uid"], utt["Dataset"], utt["Singer"]
)
)
utt2singer.close()
train.sort(key=take_duration)
test.sort(key=take_duration)
print("#Train = {}, #Test = {}".format(len(train), len(test)))
print(
"#Train hours= {}, #Test hours= {}".format(
train_total_duration / 3600, test_total_duration / 3600
)
)
# Singer Look Up Table
singer_names = list(singer_names)
singer_names.sort()
singer_lut = {name: i for i, name in enumerate(singer_names)}
print("#Singers: {}\n".format(len(singer_lut)))
# Save
with open(train_output_file, "w") as f:
json.dump(train, f, indent=4, ensure_ascii=False)
with open(test_output_file, "w") as f:
json.dump(test, f, indent=4, ensure_ascii=False)
with open(singer_dict_file, "w") as f:
json.dump(singer_lut, f, indent=4, ensure_ascii=False)
# Save meta info
meta_info = {
"datasets": datasets,
"train": {"size": len(train), "hours": round(train_total_duration / 3600, 4)},
"test": {"size": len(test), "hours": round(test_total_duration / 3600, 4)},
"singers": {"size": len(singer_lut)},
}
singer2mins = defaultdict(float)
for utt in train:
dataset, singer, duration = utt["Dataset"], utt["Singer"], utt["Duration"]
singer2mins["{}_{}".format(dataset, singer)] += duration / 60
singer2mins = sorted(singer2mins.items(), key=lambda x: x[1], reverse=True)
singer2mins = dict(
zip([i[0] for i in singer2mins], [round(i[1], 2) for i in singer2mins])
)
meta_info["singers"]["training_minutes"] = singer2mins
with open(os.path.join(save_dir, "meta_info.json"), "w") as f:
json.dump(meta_info, f, indent=4, ensure_ascii=False)
for singer, min in singer2mins.items():
print("Singer {}: {} mins".format(singer, min))
print("-" * 10, "\n")
|