Spaces:
Sleeping
Sleeping
File size: 5,150 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
from tqdm import tqdm
def cal_metadata(cfg, dataset_types=["train", "test"]):
"""
Dump metadata (singers.json, meta_info.json, utt2singer) for singer dataset or multi-datasets.
"""
from collections import Counter
datasets = cfg.dataset
print("-" * 10)
print("Preparing metadata...")
print("Including: \n{}\n".format("\n".join(datasets)))
datasets.sort()
for dataset in tqdm(datasets):
save_dir = os.path.join(cfg.preprocess.processed_dir, dataset)
assert os.path.exists(save_dir)
# 'train.json' and 'test.json' and 'valid.json' of target dataset
meta_info = dict()
utterances_dict = dict()
all_utterances = list()
duration = dict()
total_duration = 0.0
for dataset_type in dataset_types:
metadata = os.path.join(save_dir, "{}.json".format(dataset_type))
# Sort the metadata as the duration order
with open(metadata, "r", encoding="utf-8") as f:
utterances = json.load(f)
utterances = sorted(utterances, key=lambda x: x["Duration"])
utterances_dict[dataset_type] = utterances
all_utterances.extend(utterances)
# Write back the sorted metadata
with open(metadata, "w") as f:
json.dump(utterances, f, indent=4, ensure_ascii=False)
# Get the total duration and singer names for train and test utterances
duration[dataset_type] = sum(utt["Duration"] for utt in utterances)
total_duration += duration[dataset_type]
# Paths of metadata needed to be generated
singer_dict_file = os.path.join(save_dir, cfg.preprocess.spk2id)
utt2singer_file = os.path.join(save_dir, cfg.preprocess.utt2spk)
singer_names = set(
f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
for utt in all_utterances
)
# Write the utt2singer file and sort the singer names
with open(utt2singer_file, "w", encoding="utf-8") as f:
for utt in all_utterances:
f.write(
f"{utt['Dataset']}_{utt['Uid']}\t{replace_augment_name(utt['Dataset'])}_{utt['Singer']}\n"
)
singer_names = sorted(singer_names)
singer_lut = {name: i for i, name in enumerate(singer_names)}
# dump singers.json
with open(singer_dict_file, "w", encoding="utf-8") as f:
json.dump(singer_lut, f, indent=4, ensure_ascii=False)
meta_info = {
"dataset": dataset,
"statistics": {
"size": len(all_utterances),
"hours": round(total_duration / 3600, 4),
},
}
for dataset_type in dataset_types:
meta_info[dataset_type] = {
"size": len(utterances_dict[dataset_type]),
"hours": round(duration[dataset_type] / 3600, 4),
}
meta_info["singers"] = {"size": len(singer_lut)}
# Use Counter to count the minutes for each singer
total_singer2mins = Counter()
training_singer2mins = Counter()
for dataset_type in dataset_types:
for utt in utterances_dict[dataset_type]:
k = f"{replace_augment_name(utt['Dataset'])}_{utt['Singer']}"
if dataset_type == "train":
training_singer2mins[k] += utt["Duration"] / 60
total_singer2mins[k] += utt["Duration"] / 60
training_singer2mins = dict(
sorted(training_singer2mins.items(), key=lambda x: x[1], reverse=True)
)
training_singer2mins = {k: round(v, 2) for k, v in training_singer2mins.items()}
meta_info["singers"]["training_minutes"] = training_singer2mins
total_singer2mins = dict(
sorted(total_singer2mins.items(), key=lambda x: x[1], reverse=True)
)
total_singer2mins = {k: round(v, 2) for k, v in total_singer2mins.items()}
meta_info["singers"]["minutes"] = total_singer2mins
with open(os.path.join(save_dir, "meta_info.json"), "w") as f:
json.dump(meta_info, f, indent=4, ensure_ascii=False)
for singer, min in training_singer2mins.items():
print(f"Speaker/Singer {singer}: {min} mins for training")
print("-" * 10, "\n")
def replace_augment_name(dataset: str) -> str:
"""Replace the augmented dataset name with the original dataset name.
>>> print(replace_augment_name("dataset_equalizer"))
dataset
"""
if "equalizer" in dataset:
dataset = dataset.replace("_equalizer", "")
elif "formant_shift" in dataset:
dataset = dataset.replace("_formant_shift", "")
elif "pitch_shift" in dataset:
dataset = dataset.replace("_pitch_shift", "")
elif "time_stretch" in dataset:
dataset = dataset.replace("_time_stretch", "")
else:
pass
return dataset
|