Spaces:
Sleeping
Sleeping
File size: 4,826 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from tqdm import tqdm
from text.g2p_module import G2PModule, LexiconModule
from text.symbol_table import SymbolTable
"""
phoneExtractor: extract phone from text
"""
class phoneExtractor:
def __init__(self, cfg, dataset_name=None, phone_symbol_file=None):
"""
Args:
cfg: config
dataset_name: name of dataset
"""
self.cfg = cfg
# phone symbols dict
self.phone_symbols = set()
# phone symbols dict file
if phone_symbol_file is not None:
self.phone_symbols_file = phone_symbol_file
elif dataset_name is not None:
self.dataset_name = dataset_name
self.phone_symbols_file = os.path.join(
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.symbols_dict
)
# initialize g2p module
if cfg.preprocess.phone_extractor in [
"espeak",
"pypinyin",
"pypinyin_initials_finals",
]:
self.g2p_module = G2PModule(backend=cfg.preprocess.phone_extractor)
elif cfg.preprocess.phone_extractor == "lexicon":
assert cfg.preprocess.lexicon_path != ""
self.g2p_module = LexiconModule(cfg.preprocess.lexicon_path)
else:
print("No suppert to", cfg.preprocess.phone_extractor)
raise
def extract_phone(self, text):
"""
Extract phone from text
Args:
text: text of utterance
Returns:
phone_symbols: set of phone symbols
phone_seq: list of phone sequence of each utterance
"""
if self.cfg.preprocess.phone_extractor in [
"espeak",
"pypinyin",
"pypinyin_initials_finals",
]:
text = text.replace("”", '"').replace("“", '"')
phone = self.g2p_module.g2p_conversion(text=text)
self.phone_symbols.update(phone)
phone_seq = [phn for phn in phone]
elif self.cfg.preprocess.phone_extractor == "lexicon":
phone_seq = self.g2p_module.g2p_conversion(text)
phone = phone_seq
if not isinstance(phone_seq, list):
phone_seq = phone_seq.split()
return phone_seq
def save_dataset_phone_symbols_to_table(self):
# load and merge saved phone symbols
if os.path.exists(self.phone_symbols_file):
phone_symbol_dict_saved = SymbolTable.from_file(
self.phone_symbols_file
)._sym2id.keys()
self.phone_symbols.update(set(phone_symbol_dict_saved))
# save phone symbols
phone_symbol_dict = SymbolTable()
for s in sorted(list(self.phone_symbols)):
phone_symbol_dict.add(s)
phone_symbol_dict.to_file(self.phone_symbols_file)
def extract_utt_phone_sequence(cfg, metadata):
"""
Extract phone sequence from text
Args:
cfg: config
metadata: list of dict, each dict contains "Uid", "Text"
"""
dataset_name = cfg.dataset[0]
# output path
out_path = os.path.join(
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.phone_dir
)
os.makedirs(out_path, exist_ok=True)
phone_extractor = phoneExtractor(cfg, dataset_name)
for utt in tqdm(metadata):
uid = utt["Uid"]
text = utt["Text"]
phone_seq = phone_extractor.extract_phone(text)
phone_path = os.path.join(out_path, uid + ".phone")
with open(phone_path, "w") as fin:
fin.write(" ".join(phone_seq))
if cfg.preprocess.phone_extractor != "lexicon":
phone_extractor.save_dataset_phone_symbols_to_table()
def save_all_dataset_phone_symbols_to_table(self, cfg, dataset):
# phone symbols dict
phone_symbols = set()
for dataset_name in dataset:
phone_symbols_file = os.path.join(
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.symbols_dict
)
# load and merge saved phone symbols
assert os.path.exists(phone_symbols_file)
phone_symbol_dict_saved = SymbolTable.from_file(
phone_symbols_file
)._sym2id.keys()
phone_symbols.update(set(phone_symbol_dict_saved))
# save all phone symbols to each dataset
phone_symbol_dict = SymbolTable()
for s in sorted(list(phone_symbols)):
phone_symbol_dict.add(s)
for dataset_name in dataset:
phone_symbols_file = os.path.join(
cfg.preprocess.processed_dir, dataset_name, cfg.preprocess.symbols_dict
)
phone_symbol_dict.to_file(phone_symbols_file)
|