File size: 5,748 Bytes
5548515
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import os
import json
import pickle
import glob
from collections import defaultdict
from tqdm import tqdm


# Train: male 20 hours, female 10 hours
TRAIN_MALE_MAX_SECONDS = 20 * 3600
TRAIN_FEMALE_MAX_SECONDS = 10 * 3600
TEST_MAX_NUM_EVERY_PERSON = 5


def select_sample_idxs():
    chosen_speakers = get_chosen_speakers()

    with open(os.path.join(vctk_dir, "train.json"), "r") as f:
        raw_train = json.load(f)
    with open(os.path.join(vctk_dir, "test.json"), "r") as f:
        raw_test = json.load(f)

    train_idxs, test_idxs = [], []

    # =========== Test ===========
    test_nums = defaultdict(int)
    for utt in tqdm(raw_train):
        idx = utt["index"]
        singer = utt["Singer"]

        if singer in chosen_speakers and test_nums[singer] < TEST_MAX_NUM_EVERY_PERSON:
            test_nums[singer] += 1
            test_idxs.append("train_{}".format(idx))

    for utt in tqdm(raw_test):
        idx = utt["index"]
        singer = utt["Singer"]

        if singer in chosen_speakers and test_nums[singer] < TEST_MAX_NUM_EVERY_PERSON:
            test_nums[singer] += 1
            test_idxs.append("test_{}".format(idx))

    # =========== Train ===========
    for utt in tqdm(raw_train):
        idx = utt["index"]
        singer = utt["Singer"]

        if singer in chosen_speakers and "train_{}".format(idx) not in test_idxs:
            train_idxs.append("train_{}".format(idx))

    for utt in tqdm(raw_test):
        idx = utt["index"]
        singer = utt["Singer"]

        if singer in chosen_speakers and "test_{}".format(idx) not in test_idxs:
            train_idxs.append("test_{}".format(idx))

    train_idxs.sort()
    test_idxs.sort()
    return train_idxs, test_idxs, raw_train, raw_test


def statistics_of_speakers():
    speaker2time = defaultdict(float)
    sex2time = defaultdict(float)

    with open(os.path.join(vctk_dir, "train.json"), "r") as f:
        train = json.load(f)
    with open(os.path.join(vctk_dir, "test.json"), "r") as f:
        test = json.load(f)

    for utt in train + test:
        # minutes
        speaker2time[utt["Singer"]] += utt["Duration"]
        # hours
        sex2time[utt["Singer"].split("_")[0]] += utt["Duration"]

    print(
        "Female: {:.2f} hours, Male: {:.2f} hours.\n".format(
            sex2time["female"] / 3600, sex2time["male"] / 3600
        )
    )

    speaker2time = sorted(speaker2time.items(), key=lambda x: x[-1], reverse=True)
    for singer, seconds in speaker2time:
        print("{}\t{:.2f} mins".format(singer, seconds / 60))

    return speaker2time


def get_chosen_speakers():
    speaker2time = statistics_of_speakers()

    chosen_time = defaultdict(float)
    chosen_speaker = defaultdict(list)
    train_constrait = {
        "male": TRAIN_MALE_MAX_SECONDS,
        "female": TRAIN_FEMALE_MAX_SECONDS,
    }

    for speaker, seconds in speaker2time:
        sex = speaker.split("_")[0]
        if chosen_time[sex] < train_constrait[sex]:
            chosen_time[sex] += seconds
            chosen_speaker[sex].append(speaker)

    speaker2time = dict(speaker2time)
    chosen_speaker = chosen_speaker["male"] + chosen_speaker["female"]
    print("\n#Chosen speakers = {}".format(len(chosen_speaker)))
    for spk in chosen_speaker:
        print("{}\t{:.2f} mins".format(spk, speaker2time[spk] / 60))

    return chosen_speaker


if __name__ == "__main__":
    root_path = ""
    vctk_dir = os.path.join(root_path, "vctk")
    fewspeaker_dir = os.path.join(root_path, "vctkfewspeaker")
    os.makedirs(fewspeaker_dir, exist_ok=True)

    train_idxs, test_idxs, raw_train, raw_test = select_sample_idxs()
    print("#Train = {}, #Test = {}".format(len(train_idxs), len(test_idxs)))

    # There are no data leakage
    assert len(set(train_idxs).intersection(set(test_idxs))) == 0
    for idx in train_idxs + test_idxs:
        # No test data of raw vctk
        assert "test_" not in idx

    for split, chosen_idxs in zip(["train", "test"], [train_idxs, test_idxs]):
        print("{}: #chosen idx = {}\n".format(split, len(chosen_idxs)))

        # Select features
        feat_files = glob.glob("**/train.pkl", root_dir=vctk_dir, recursive=True)
        for file in tqdm(feat_files):
            raw_file = os.path.join(vctk_dir, file)
            new_file = os.path.join(
                fewspeaker_dir, file.replace("train.pkl", "{}.pkl".format(split))
            )

            new_dir = "/".join(new_file.split("/")[:-1])
            os.makedirs(new_dir, exist_ok=True)

            if "mel_min" in file or "mel_max" in file:
                os.system("cp {} {}".format(raw_file, new_file))
                continue

            with open(raw_file, "rb") as f:
                raw_feats = pickle.load(f)

            print("file: {}, #raw_feats = {}".format(file, len(raw_feats)))
            new_feats = []
            for idx in chosen_idxs:
                chosen_split_is_train, raw_idx = idx.split("_")
                assert chosen_split_is_train == "train"
                new_feats.append(raw_feats[int(raw_idx)])

            with open(new_file, "wb") as f:
                pickle.dump(new_feats, f)
            print("New file: {}, #new_feats = {}".format(new_file, len(new_feats)))

        # Utterance re-index
        news_utts = [raw_train[int(idx.split("_")[-1])] for idx in chosen_idxs]
        for i, utt in enumerate(news_utts):
            utt["Dataset"] = "vctkfewsinger"
            utt["index"] = i

        with open(os.path.join(fewspeaker_dir, "{}.json".format(split)), "w") as f:
            json.dump(news_utts, f, indent=4)