File size: 4,529 Bytes
dce1ab4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.

import torch
import math

from torch import nn
from torch.nn import functional as F

from .conv import Conv1d as conv_Conv1d


def Conv1d(in_channels, out_channels, kernel_size, dropout=0, **kwargs):
    m = conv_Conv1d(in_channels, out_channels, kernel_size, **kwargs)
    nn.init.kaiming_normal_(m.weight, nonlinearity="relu")
    if m.bias is not None:
        nn.init.constant_(m.bias, 0)
    return nn.utils.weight_norm(m)


def Conv1d1x1(in_channels, out_channels, bias=True):
    return Conv1d(
        in_channels, out_channels, kernel_size=1, padding=0, dilation=1, bias=bias
    )


def _conv1x1_forward(conv, x, is_incremental):
    if is_incremental:
        x = conv.incremental_forward(x)
    else:
        x = conv(x)
    return x


class ResidualConv1dGLU(nn.Module):
    """Residual dilated conv1d + Gated linear unit

    Args:
        residual_channels (int): Residual input / output channels
        gate_channels (int): Gated activation channels.
        kernel_size (int): Kernel size of convolution layers.
        skip_out_channels (int): Skip connection channels. If None, set to same
          as ``residual_channels``.
        cin_channels (int): Local conditioning channels. If negative value is
          set, local conditioning is disabled.
        dropout (float): Dropout probability.
        padding (int): Padding for convolution layers. If None, proper padding
          is computed depends on dilation and kernel_size.
        dilation (int): Dilation factor.
    """

    def __init__(
        self,
        residual_channels,
        gate_channels,
        kernel_size,
        skip_out_channels=None,
        cin_channels=-1,
        dropout=1 - 0.95,
        padding=None,
        dilation=1,
        causal=True,
        bias=True,
        *args,
        **kwargs,
    ):
        super(ResidualConv1dGLU, self).__init__()
        self.dropout = dropout

        if skip_out_channels is None:
            skip_out_channels = residual_channels
        if padding is None:
            # no future time stamps available
            if causal:
                padding = (kernel_size - 1) * dilation
            else:
                padding = (kernel_size - 1) // 2 * dilation
        self.causal = causal

        self.conv = Conv1d(
            residual_channels,
            gate_channels,
            kernel_size,
            padding=padding,
            dilation=dilation,
            bias=bias,
            *args,
            **kwargs,
        )

        # mel conditioning
        self.conv1x1c = Conv1d1x1(cin_channels, gate_channels, bias=False)

        gate_out_channels = gate_channels // 2
        self.conv1x1_out = Conv1d1x1(gate_out_channels, residual_channels, bias=bias)
        self.conv1x1_skip = Conv1d1x1(gate_out_channels, skip_out_channels, bias=bias)

    def forward(self, x, c=None):
        return self._forward(x, c, False)

    def incremental_forward(self, x, c=None):
        return self._forward(x, c, True)

    def clear_buffer(self):
        for c in [
            self.conv,
            self.conv1x1_out,
            self.conv1x1_skip,
            self.conv1x1c,
        ]:
            if c is not None:
                c.clear_buffer()

    def _forward(self, x, c, is_incremental):
        """Forward

        Args:
            x (Tensor): B x C x T
            c (Tensor): B x C x T, Mel conditioning features
        Returns:
            Tensor: output
        """
        residual = x
        x = F.dropout(x, p=self.dropout, training=self.training)
        if is_incremental:
            splitdim = -1
            x = self.conv.incremental_forward(x)
        else:
            splitdim = 1
            x = self.conv(x)
            # remove future time steps
            x = x[:, :, : residual.size(-1)] if self.causal else x

        a, b = x.split(x.size(splitdim) // 2, dim=splitdim)

        assert self.conv1x1c is not None
        c = _conv1x1_forward(self.conv1x1c, c, is_incremental)
        ca, cb = c.split(c.size(splitdim) // 2, dim=splitdim)
        a, b = a + ca, b + cb

        x = torch.tanh(a) * torch.sigmoid(b)

        # For skip connection
        s = _conv1x1_forward(self.conv1x1_skip, x, is_incremental)

        # For residual connection
        x = _conv1x1_forward(self.conv1x1_out, x, is_incremental)

        x = (x + residual) * math.sqrt(0.5)
        return x, s