Spaces:
Sleeping
Sleeping
File size: 4,378 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
from tqdm import tqdm
import glob
import json
import torchaudio
from utils.util import has_existed
from utils.io import save_audio
def get_splitted_utterances(
raw_wav_dir, trimed_wav_dir, n_utterance_splits, overlapping
):
res = []
raw_song_files = glob.glob(
os.path.join(raw_wav_dir, "**/pjs*_song.wav"), recursive=True
)
trimed_song_files = glob.glob(
os.path.join(trimed_wav_dir, "**/*.wav"), recursive=True
)
if len(raw_song_files) * n_utterance_splits == len(trimed_song_files):
print("Splitted done...")
for wav_file in tqdm(trimed_song_files):
uid = wav_file.split("/")[-1].split(".")[0]
utt = {"Dataset": "pjs", "Singer": "male1", "Uid": uid, "Path": wav_file}
waveform, sample_rate = torchaudio.load(wav_file)
duration = waveform.size(-1) / sample_rate
utt["Duration"] = duration
res.append(utt)
else:
for wav_file in tqdm(raw_song_files):
song_id = wav_file.split("/")[-1].split(".")[0]
waveform, sample_rate = torchaudio.load(wav_file)
trimed_waveform = torchaudio.functional.vad(waveform, sample_rate)
trimed_waveform = torchaudio.functional.vad(
trimed_waveform.flip(dims=[1]), sample_rate
).flip(dims=[1])
audio_len = trimed_waveform.size(-1)
lapping_len = overlapping * sample_rate
for i in range(n_utterance_splits):
start = i * audio_len // 3
end = start + audio_len // 3 + lapping_len
splitted_waveform = trimed_waveform[:, start:end]
utt = {
"Dataset": "pjs",
"Singer": "male1",
"Uid": "{}_{}".format(song_id, i),
}
# Duration
duration = splitted_waveform.size(-1) / sample_rate
utt["Duration"] = duration
# Save trimed wav
splitted_waveform_file = os.path.join(
trimed_wav_dir, "{}.wav".format(utt["Uid"])
)
save_audio(splitted_waveform_file, splitted_waveform, sample_rate)
# Path
utt["Path"] = splitted_waveform_file
res.append(utt)
res = sorted(res, key=lambda x: x["Uid"])
return res
def main(output_path, dataset_path, n_utterance_splits=3, overlapping=1):
"""
1. Split one raw utterance to three splits (since some samples are too long)
2. Overlapping of ajacent splits is 1 s
"""
print("-" * 10)
print("Preparing training dataset for PJS...")
save_dir = os.path.join(output_path, "pjs")
raw_wav_dir = os.path.join(dataset_path, "PJS_corpus_ver1.1")
# Trim for silence
trimed_wav_dir = os.path.join(dataset_path, "trim")
os.makedirs(trimed_wav_dir, exist_ok=True)
# Total utterances
utterances = get_splitted_utterances(
raw_wav_dir, trimed_wav_dir, n_utterance_splits, overlapping
)
total_uids = [utt["Uid"] for utt in utterances]
# Test uids
n_test_songs = 3
test_uids = []
for i in range(1, n_test_songs + 1):
test_uids += [
"pjs00{}_song_{}".format(i, split_id)
for split_id in range(n_utterance_splits)
]
# Train uids
train_uids = [uid for uid in total_uids if uid not in test_uids]
for dataset_type in ["train", "test"]:
output_file = os.path.join(save_dir, "{}.json".format(dataset_type))
if has_existed(output_file):
continue
uids = eval("{}_uids".format(dataset_type))
res = [utt for utt in utterances if utt["Uid"] in uids]
for i in range(len(res)):
res[i]["index"] = i
time = sum([utt["Duration"] for utt in res])
print(
"{}, Total size: {}, Total Duraions = {} s = {:.2f} hour\n".format(
dataset_type, len(res), time, time / 3600
)
)
# Save
os.makedirs(save_dir, exist_ok=True)
with open(output_file, "w") as f:
json.dump(res, f, indent=4, ensure_ascii=False)
|