Spaces:
Sleeping
Sleeping
File size: 6,121 Bytes
5548515 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import torch
from torch.optim import Optimizer
from typing import List, Optional, Tuple, Union
def calc_lr(step, dim_embed, warmup_steps):
return dim_embed ** (-0.5) * min(step ** (-0.5), step * warmup_steps ** (-1.5))
# The function is modified from
# https://github.com/lifeiteng/vall-e/blob/9c69096d603ce13174fb5cb025f185e2e9b36ac7/valle/modules/scheduler.py
class NoamScheduler(torch.optim.lr_scheduler._LRScheduler):
def __init__(
self,
base_lr: float,
optimizer: torch.optim.Optimizer,
dim_embed: int,
warmup_steps: int,
last_epoch: int = -1,
verbose: bool = False,
) -> None:
self.dim_embed = dim_embed
self.base_lr = base_lr
self.warmup_steps = warmup_steps
self.num_param_groups = len(optimizer.param_groups)
super().__init__(optimizer, last_epoch, verbose)
def get_lr(self) -> float:
lr = self.base_lr * calc_lr(self._step_count, self.dim_embed, self.warmup_steps)
return [lr] * self.num_param_groups
def set_step(self, step: int):
self._step_count = step
class LRScheduler(object):
"""
Base-class for learning rate schedulers where the learning-rate depends on both the
batch and the epoch.
"""
def __init__(self, optimizer: Optimizer, verbose: bool = False):
# Attach optimizer
if not isinstance(optimizer, Optimizer):
raise TypeError("{} is not an Optimizer".format(type(optimizer).__name__))
self.optimizer = optimizer
self.verbose = verbose
for group in optimizer.param_groups:
group.setdefault("base_lr", group["lr"])
self.base_lrs = [group["base_lr"] for group in optimizer.param_groups]
self.epoch = 0
self.batch = 0
def state_dict(self):
"""Returns the state of the scheduler as a :class:`dict`.
It contains an entry for every variable in self.__dict__ which
is not the optimizer.
"""
return {
"base_lrs": self.base_lrs,
"epoch": self.epoch,
"batch": self.batch,
}
def load_state_dict(self, state_dict):
"""Loads the schedulers state.
Args:
state_dict (dict): scheduler state. Should be an object returned
from a call to :meth:`state_dict`.
"""
self.__dict__.update(state_dict)
def get_last_lr(self) -> List[float]:
"""Return last computed learning rate by current scheduler. Will be a list of float."""
return self._last_lr
def get_lr(self):
# Compute list of learning rates from self.epoch and self.batch and
# self.base_lrs; this must be overloaded by the user.
# e.g. return [some_formula(self.batch, self.epoch, base_lr) for base_lr in self.base_lrs ]
raise NotImplementedError
def step_batch(self, batch: Optional[int] = None) -> None:
# Step the batch index, or just set it. If `batch` is specified, it
# must be the batch index from the start of training, i.e. summed over
# all epochs.
# You can call this in any order; if you don't provide 'batch', it should
# of course be called once per batch.
if batch is not None:
self.batch = batch
else:
self.batch = self.batch + 1
self._set_lrs()
def step_epoch(self, epoch: Optional[int] = None):
# Step the epoch index, or just set it. If you provide the 'epoch' arg,
# you should call this at the start of the epoch; if you don't provide the 'epoch'
# arg, you should call it at the end of the epoch.
if epoch is not None:
self.epoch = epoch
else:
self.epoch = self.epoch + 1
self._set_lrs()
def _set_lrs(self):
values = self.get_lr()
assert len(values) == len(self.optimizer.param_groups)
for i, data in enumerate(zip(self.optimizer.param_groups, values)):
param_group, lr = data
param_group["lr"] = lr
self._last_lr = [group["lr"] for group in self.optimizer.param_groups]
class Eden(LRScheduler):
"""
Eden scheduler.
The basic formula (before warmup) is:
lr = base_lr * (((batch**2 + lr_batches**2) / lr_batches**2) ** -0.25 *
(((epoch**2 + lr_epochs**2) / lr_epochs**2) ** -0.25)) * warmup
where `warmup` increases from linearly 0.5 to 1 over `warmup_batches` batches
and then stays constant at 1.
E.g. suggest base_lr = 0.04 (passed to optimizer) if used with ScaledAdam
Args:
optimizer: the optimizer to change the learning rates on
lr_batches: the number of batches after which we start significantly
decreasing the learning rate, suggest 5000.
lr_epochs: the number of epochs after which we start significantly
decreasing the learning rate, suggest 6 if you plan to do e.g.
20 to 40 epochs, but may need smaller number if dataset is huge
and you will do few epochs.
"""
def __init__(
self,
optimizer: Optimizer,
lr_batches: Union[int, float],
lr_epochs: Union[int, float],
warmup_batches: Union[int, float] = 500.0,
verbose: bool = False,
):
super(Eden, self).__init__(optimizer, verbose)
self.lr_batches = lr_batches
self.lr_epochs = lr_epochs
self.warmup_batches = warmup_batches
def get_lr(self):
factor = (
(self.batch**2 + self.lr_batches**2) / self.lr_batches**2
) ** -0.25 * (
((self.epoch**2 + self.lr_epochs**2) / self.lr_epochs**2) ** -0.25
)
warmup_factor = (
1.0
if self.batch >= self.warmup_batches
else 0.5 + 0.5 * (self.batch / self.warmup_batches)
)
return [x * factor * warmup_factor for x in self.base_lrs]
|