Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import json | |
import os | |
import torchaudio | |
import numpy as np | |
import torch | |
from utils.data_utils import * | |
from torch.nn.utils.rnn import pad_sequence | |
from text import text_to_sequence | |
from text.text_token_collation import phoneIDCollation | |
from processors.acoustic_extractor import cal_normalized_mel | |
from models.base.base_dataset import ( | |
BaseDataset, | |
BaseCollator, | |
BaseTestDataset, | |
BaseTestCollator, | |
) | |
from processors.content_extractor import ( | |
ContentvecExtractor, | |
WenetExtractor, | |
WhisperExtractor, | |
) | |
class TTSDataset(BaseDataset): | |
def __init__(self, cfg, dataset, is_valid=False): | |
""" | |
Args: | |
cfg: config | |
dataset: dataset name | |
is_valid: whether to use train or valid dataset | |
""" | |
assert isinstance(dataset, str) | |
self.cfg = cfg | |
processed_data_dir = os.path.join(cfg.preprocess.processed_dir, dataset) | |
meta_file = cfg.preprocess.valid_file if is_valid else cfg.preprocess.train_file | |
self.metafile_path = os.path.join(processed_data_dir, meta_file) | |
self.metadata = self.get_metadata() | |
""" | |
load spk2id and utt2spk from json file | |
spk2id: {spk1: 0, spk2: 1, ...} | |
utt2spk: {dataset_uid: spk1, ...} | |
""" | |
if cfg.preprocess.use_spkid: | |
dataset = self.metadata[0]["Dataset"] | |
spk2id_path = os.path.join(processed_data_dir, cfg.preprocess.spk2id) | |
with open(spk2id_path, "r") as f: | |
self.spk2id = json.load(f) | |
utt2spk_path = os.path.join(processed_data_dir, cfg.preprocess.utt2spk) | |
self.utt2spk = dict() | |
with open(utt2spk_path, "r") as f: | |
for line in f.readlines(): | |
utt, spk = line.strip().split("\t") | |
self.utt2spk[utt] = spk | |
if cfg.preprocess.use_uv: | |
self.utt2uv_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2uv_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.uv_dir, | |
uid + ".npy", | |
) | |
if cfg.preprocess.use_frame_pitch: | |
self.utt2frame_pitch_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2frame_pitch_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.pitch_dir, | |
uid + ".npy", | |
) | |
if cfg.preprocess.use_frame_energy: | |
self.utt2frame_energy_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2frame_energy_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.energy_dir, | |
uid + ".npy", | |
) | |
if cfg.preprocess.use_mel: | |
self.utt2mel_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2mel_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.mel_dir, | |
uid + ".npy", | |
) | |
if cfg.preprocess.use_linear: | |
self.utt2linear_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2linear_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.linear_dir, | |
uid + ".npy", | |
) | |
if cfg.preprocess.use_audio: | |
self.utt2audio_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
if cfg.preprocess.extract_audio: | |
self.utt2audio_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.audio_dir, | |
uid + ".wav", | |
) | |
else: | |
self.utt2audio_path[utt] = utt_info["Path"] | |
# self.utt2audio_path[utt] = os.path.join( | |
# cfg.preprocess.processed_dir, | |
# dataset, | |
# cfg.preprocess.audio_dir, | |
# uid + ".numpy", | |
# ) | |
elif cfg.preprocess.use_label: | |
self.utt2label_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2label_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.label_dir, | |
uid + ".npy", | |
) | |
elif cfg.preprocess.use_one_hot: | |
self.utt2one_hot_path = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
self.utt2one_hot_path[utt] = os.path.join( | |
cfg.preprocess.processed_dir, | |
dataset, | |
cfg.preprocess.one_hot_dir, | |
uid + ".npy", | |
) | |
if cfg.preprocess.use_text or cfg.preprocess.use_phone: | |
self.utt2seq = {} | |
for utt_info in self.metadata: | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
if cfg.preprocess.use_text: | |
text = utt_info["Text"] | |
sequence = text_to_sequence(text, cfg.preprocess.text_cleaners) | |
elif cfg.preprocess.use_phone: | |
# load phoneme squence from phone file | |
phone_path = os.path.join( | |
processed_data_dir, cfg.preprocess.phone_dir, uid + ".phone" | |
) | |
with open(phone_path, "r") as fin: | |
phones = fin.readlines() | |
assert len(phones) == 1 | |
phones = phones[0].strip() | |
phones_seq = phones.split(" ") | |
phon_id_collator = phoneIDCollation(cfg, dataset=dataset) | |
sequence = phon_id_collator.get_phone_id_sequence(cfg, phones_seq) | |
self.utt2seq[utt] = sequence | |
def __getitem__(self, index): | |
utt_info = self.metadata[index] | |
dataset = utt_info["Dataset"] | |
uid = utt_info["Uid"] | |
utt = "{}_{}".format(dataset, uid) | |
single_feature = dict() | |
if self.cfg.preprocess.use_spkid: | |
single_feature["spk_id"] = np.array( | |
[self.spk2id[self.utt2spk[utt]]], dtype=np.int32 | |
) | |
if self.cfg.preprocess.use_mel: | |
mel = np.load(self.utt2mel_path[utt]) | |
assert mel.shape[0] == self.cfg.preprocess.n_mel # [n_mels, T] | |
if self.cfg.preprocess.use_min_max_norm_mel: | |
# do mel norm | |
mel = cal_normalized_mel(mel, utt_info["Dataset"], self.cfg.preprocess) | |
if "target_len" not in single_feature.keys(): | |
single_feature["target_len"] = mel.shape[1] | |
single_feature["mel"] = mel.T # [T, n_mels] | |
if self.cfg.preprocess.use_linear: | |
linear = np.load(self.utt2linear_path[utt]) | |
if "target_len" not in single_feature.keys(): | |
single_feature["target_len"] = linear.shape[1] | |
single_feature["linear"] = linear.T # [T, n_linear] | |
if self.cfg.preprocess.use_frame_pitch: | |
frame_pitch_path = self.utt2frame_pitch_path[utt] | |
frame_pitch = np.load(frame_pitch_path) | |
if "target_len" not in single_feature.keys(): | |
single_feature["target_len"] = len(frame_pitch) | |
aligned_frame_pitch = align_length( | |
frame_pitch, single_feature["target_len"] | |
) | |
single_feature["frame_pitch"] = aligned_frame_pitch | |
if self.cfg.preprocess.use_uv: | |
frame_uv_path = self.utt2uv_path[utt] | |
frame_uv = np.load(frame_uv_path) | |
aligned_frame_uv = align_length(frame_uv, single_feature["target_len"]) | |
aligned_frame_uv = [ | |
0 if frame_uv else 1 for frame_uv in aligned_frame_uv | |
] | |
aligned_frame_uv = np.array(aligned_frame_uv) | |
single_feature["frame_uv"] = aligned_frame_uv | |
if self.cfg.preprocess.use_frame_energy: | |
frame_energy_path = self.utt2frame_energy_path[utt] | |
frame_energy = np.load(frame_energy_path) | |
if "target_len" not in single_feature.keys(): | |
single_feature["target_len"] = len(frame_energy) | |
aligned_frame_energy = align_length( | |
frame_energy, single_feature["target_len"] | |
) | |
single_feature["frame_energy"] = aligned_frame_energy | |
if self.cfg.preprocess.use_audio: | |
audio, sr = torchaudio.load(self.utt2audio_path[utt]) | |
audio = audio.cpu().numpy().squeeze() | |
single_feature["audio"] = audio | |
single_feature["audio_len"] = audio.shape[0] | |
if self.cfg.preprocess.use_phone or self.cfg.preprocess.use_text: | |
single_feature["phone_seq"] = np.array(self.utt2seq[utt]) | |
single_feature["phone_len"] = len(self.utt2seq[utt]) | |
return single_feature | |
def __len__(self): | |
return super().__len__() | |
def get_metadata(self): | |
return super().get_metadata() | |
class TTSCollator(BaseCollator): | |
"""Zero-pads model inputs and targets based on number of frames per step""" | |
def __init__(self, cfg): | |
super().__init__(cfg) | |
def __call__(self, batch): | |
parsed_batch_features = super().__call__(batch) | |
return parsed_batch_features | |
class TTSTestDataset(BaseTestDataset): | |
def __init__(self, args, cfg): | |
self.cfg = cfg | |
# inference from test list file | |
if args.test_list_file is not None: | |
# construst metadata | |
self.metadata = [] | |
with open(args.test_list_file, "r") as fin: | |
for idx, line in enumerate(fin.readlines()): | |
utt_info = {} | |
utt_info["Dataset"] = "test" | |
utt_info["Text"] = line.strip() | |
utt_info["Uid"] = str(idx) | |
self.metadata.append(utt_info) | |
else: | |
assert args.testing_set | |
self.metafile_path = os.path.join( | |
cfg.preprocess.processed_dir, | |
args.dataset, | |
"{}.json".format(args.testing_set), | |
) | |
self.metadata = self.get_metadata() | |
def __getitem__(self, index): | |
single_feature = {} | |
return single_feature | |
def __len__(self): | |
return len(self.metadata) | |
class TTSTestCollator(BaseTestCollator): | |
"""Zero-pads model inputs and targets based on number of frames per step""" | |
def __init__(self, cfg): | |
self.cfg = cfg | |
def __call__(self, batch): | |
packed_batch_features = dict() | |
# mel: [b, T, n_mels] | |
# frame_pitch, frame_energy: [1, T] | |
# target_len: [1] | |
# spk_id: [b, 1] | |
# mask: [b, T, 1] | |
for key in batch[0].keys(): | |
if key == "target_len": | |
packed_batch_features["target_len"] = torch.LongTensor( | |
[b["target_len"] for b in batch] | |
) | |
masks = [ | |
torch.ones((b["target_len"], 1), dtype=torch.long) for b in batch | |
] | |
packed_batch_features["mask"] = pad_sequence( | |
masks, batch_first=True, padding_value=0 | |
) | |
elif key == "phone_len": | |
packed_batch_features["phone_len"] = torch.LongTensor( | |
[b["phone_len"] for b in batch] | |
) | |
masks = [ | |
torch.ones((b["phone_len"], 1), dtype=torch.long) for b in batch | |
] | |
packed_batch_features["phn_mask"] = pad_sequence( | |
masks, batch_first=True, padding_value=0 | |
) | |
elif key == "audio_len": | |
packed_batch_features["audio_len"] = torch.LongTensor( | |
[b["audio_len"] for b in batch] | |
) | |
masks = [ | |
torch.ones((b["audio_len"], 1), dtype=torch.long) for b in batch | |
] | |
else: | |
values = [torch.from_numpy(b[key]) for b in batch] | |
packed_batch_features[key] = pad_sequence( | |
values, batch_first=True, padding_value=0 | |
) | |
return packed_batch_features | |