Spaces:
Sleeping
Sleeping
import torch | |
import numpy as np | |
from torch.utils.data import ConcatDataset, DataLoader | |
from models.tts.naturalspeech2.base_trainer import TTSTrainer | |
from models.base.base_trainer import BaseTrainer | |
from models.base.base_sampler import VariableSampler | |
from models.tts.naturalspeech2.ns2_dataset import NS2Dataset, NS2Collator, batch_by_size | |
from models.tts.naturalspeech2.ns2_loss import ( | |
log_pitch_loss, | |
log_dur_loss, | |
diff_loss, | |
diff_ce_loss, | |
) | |
from torch.utils.data.sampler import BatchSampler, SequentialSampler | |
from models.tts.naturalspeech2.ns2 import NaturalSpeech2 | |
from torch.optim import Adam, AdamW | |
from torch.nn import MSELoss, L1Loss | |
import torch.nn.functional as F | |
from diffusers import get_scheduler | |
class NS2Trainer(TTSTrainer): | |
def __init__(self, args, cfg): | |
TTSTrainer.__init__(self, args, cfg) | |
def _build_model(self): | |
model = NaturalSpeech2(cfg=self.cfg.model) | |
return model | |
def _build_dataset(self): | |
return NS2Dataset, NS2Collator | |
def _build_dataloader(self): | |
if self.cfg.train.use_dynamic_batchsize: | |
print("Use Dynamic Batchsize......") | |
Dataset, Collator = self._build_dataset() | |
train_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=False) | |
train_collate = Collator(self.cfg) | |
batch_sampler = batch_by_size( | |
train_dataset.num_frame_indices, | |
train_dataset.get_num_frames, | |
max_tokens=self.cfg.train.max_tokens * self.accelerator.num_processes, | |
max_sentences=self.cfg.train.max_sentences | |
* self.accelerator.num_processes, | |
required_batch_size_multiple=self.accelerator.num_processes, | |
) | |
np.random.seed(980205) | |
np.random.shuffle(batch_sampler) | |
print(batch_sampler[:1]) | |
batches = [ | |
x[ | |
self.accelerator.local_process_index :: self.accelerator.num_processes | |
] | |
for x in batch_sampler | |
if len(x) % self.accelerator.num_processes == 0 | |
] | |
train_loader = DataLoader( | |
train_dataset, | |
collate_fn=train_collate, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
batch_sampler=VariableSampler( | |
batches, drop_last=False, use_random_sampler=True | |
), | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
self.accelerator.wait_for_everyone() | |
valid_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=True) | |
valid_collate = Collator(self.cfg) | |
batch_sampler = batch_by_size( | |
valid_dataset.num_frame_indices, | |
valid_dataset.get_num_frames, | |
max_tokens=self.cfg.train.max_tokens * self.accelerator.num_processes, | |
max_sentences=self.cfg.train.max_sentences | |
* self.accelerator.num_processes, | |
required_batch_size_multiple=self.accelerator.num_processes, | |
) | |
batches = [ | |
x[ | |
self.accelerator.local_process_index :: self.accelerator.num_processes | |
] | |
for x in batch_sampler | |
if len(x) % self.accelerator.num_processes == 0 | |
] | |
valid_loader = DataLoader( | |
valid_dataset, | |
collate_fn=valid_collate, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
batch_sampler=VariableSampler(batches, drop_last=False), | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
self.accelerator.wait_for_everyone() | |
else: | |
print("Use Normal Batchsize......") | |
Dataset, Collator = self._build_dataset() | |
train_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=False) | |
train_collate = Collator(self.cfg) | |
train_loader = DataLoader( | |
train_dataset, | |
shuffle=True, | |
collate_fn=train_collate, | |
batch_size=self.cfg.train.batch_size, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
valid_dataset = Dataset(self.cfg, self.cfg.dataset[0], is_valid=True) | |
valid_collate = Collator(self.cfg) | |
valid_loader = DataLoader( | |
valid_dataset, | |
shuffle=True, | |
collate_fn=valid_collate, | |
batch_size=self.cfg.train.batch_size, | |
num_workers=self.cfg.train.dataloader.num_worker, | |
pin_memory=self.cfg.train.dataloader.pin_memory, | |
) | |
self.accelerator.wait_for_everyone() | |
return train_loader, valid_loader | |
def _build_optimizer(self): | |
optimizer = torch.optim.AdamW( | |
filter(lambda p: p.requires_grad, self.model.parameters()), | |
**self.cfg.train.adam | |
) | |
return optimizer | |
def _build_scheduler(self): | |
lr_scheduler = get_scheduler( | |
self.cfg.train.lr_scheduler, | |
optimizer=self.optimizer, | |
num_warmup_steps=self.cfg.train.lr_warmup_steps, | |
num_training_steps=self.cfg.train.num_train_steps, | |
) | |
return lr_scheduler | |
def _build_criterion(self): | |
criterion = torch.nn.L1Loss(reduction="mean") | |
return criterion | |
def write_summary(self, losses, stats): | |
for key, value in losses.items(): | |
self.sw.add_scalar(key, value, self.step) | |
def write_valid_summary(self, losses, stats): | |
for key, value in losses.items(): | |
self.sw.add_scalar(key, value, self.step) | |
def get_state_dict(self): | |
state_dict = { | |
"model": self.model.state_dict(), | |
"optimizer": self.optimizer.state_dict(), | |
"scheduler": self.scheduler.state_dict(), | |
"step": self.step, | |
"epoch": self.epoch, | |
"batch_size": self.cfg.train.batch_size, | |
} | |
return state_dict | |
def load_model(self, checkpoint): | |
self.step = checkpoint["step"] | |
self.epoch = checkpoint["epoch"] | |
self.model.load_state_dict(checkpoint["model"]) | |
self.optimizer.load_state_dict(checkpoint["optimizer"]) | |
self.scheduler.load_state_dict(checkpoint["scheduler"]) | |
def _train_step(self, batch): | |
train_losses = {} | |
total_loss = 0 | |
train_stats = {} | |
code = batch["code"] # (B, 16, T) | |
pitch = batch["pitch"] # (B, T) | |
duration = batch["duration"] # (B, N) | |
phone_id = batch["phone_id"] # (B, N) | |
ref_code = batch["ref_code"] # (B, 16, T') | |
phone_mask = batch["phone_mask"] # (B, N) | |
mask = batch["mask"] # (B, T) | |
ref_mask = batch["ref_mask"] # (B, T') | |
diff_out, prior_out = self.model( | |
code=code, | |
pitch=pitch, | |
duration=duration, | |
phone_id=phone_id, | |
ref_code=ref_code, | |
phone_mask=phone_mask, | |
mask=mask, | |
ref_mask=ref_mask, | |
) | |
# pitch loss | |
pitch_loss = log_pitch_loss(prior_out["pitch_pred_log"], pitch, mask=mask) | |
total_loss += pitch_loss | |
train_losses["pitch_loss"] = pitch_loss | |
# duration loss | |
dur_loss = log_dur_loss(prior_out["dur_pred_log"], duration, mask=phone_mask) | |
total_loss += dur_loss | |
train_losses["dur_loss"] = dur_loss | |
x0 = self.model.module.code_to_latent(code) | |
if self.cfg.model.diffusion.diffusion_type == "diffusion": | |
# diff loss x0 | |
diff_loss_x0 = diff_loss(diff_out["x0_pred"], x0, mask=mask) | |
total_loss += diff_loss_x0 | |
train_losses["diff_loss_x0"] = diff_loss_x0 | |
# diff loss noise | |
diff_loss_noise = diff_loss( | |
diff_out["noise_pred"], diff_out["noise"], mask=mask | |
) | |
total_loss += diff_loss_noise * self.cfg.train.diff_noise_loss_lambda | |
train_losses["diff_loss_noise"] = diff_loss_noise | |
elif self.cfg.model.diffusion.diffusion_type == "flow": | |
# diff flow matching loss | |
flow_gt = diff_out["noise"] - x0 | |
diff_loss_flow = diff_loss(diff_out["flow_pred"], flow_gt, mask=mask) | |
total_loss += diff_loss_flow | |
train_losses["diff_loss_flow"] = diff_loss_flow | |
# diff loss ce | |
# (nq, B, T); (nq, B, T, 1024) | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices, pred_dist = self.model.module.latent_to_code( | |
diff_out["x0_pred"], nq=code.shape[1] | |
) | |
gt_indices, _ = self.model.module.latent_to_code(x0, nq=code.shape[1]) | |
diff_loss_ce = diff_ce_loss(pred_dist, gt_indices, mask=mask) | |
total_loss += diff_loss_ce * self.cfg.train.diff_ce_loss_lambda | |
train_losses["diff_loss_ce"] = diff_loss_ce | |
self.optimizer.zero_grad() | |
# total_loss.backward() | |
self.accelerator.backward(total_loss) | |
if self.accelerator.sync_gradients: | |
self.accelerator.clip_grad_norm_( | |
filter(lambda p: p.requires_grad, self.model.parameters()), 0.5 | |
) | |
self.optimizer.step() | |
self.scheduler.step() | |
for item in train_losses: | |
train_losses[item] = train_losses[item].item() | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices_list = pred_indices.long().detach().cpu().numpy() | |
gt_indices_list = gt_indices.long().detach().cpu().numpy() | |
mask_list = batch["mask"].detach().cpu().numpy() | |
for i in range(pred_indices_list.shape[0]): | |
pred_acc = np.sum( | |
(pred_indices_list[i] == gt_indices_list[i]) * mask_list | |
) / np.sum(mask_list) | |
train_losses["pred_acc_{}".format(str(i))] = pred_acc | |
train_losses["batch_size"] = code.shape[0] | |
train_losses["max_frame_nums"] = np.max( | |
batch["frame_nums"].detach().cpu().numpy() | |
) | |
return (total_loss.item(), train_losses, train_stats) | |
def _valid_step(self, batch): | |
valid_losses = {} | |
total_loss = 0 | |
valid_stats = {} | |
code = batch["code"] # (B, 16, T) | |
pitch = batch["pitch"] # (B, T) | |
duration = batch["duration"] # (B, N) | |
phone_id = batch["phone_id"] # (B, N) | |
ref_code = batch["ref_code"] # (B, 16, T') | |
phone_mask = batch["phone_mask"] # (B, N) | |
mask = batch["mask"] # (B, T) | |
ref_mask = batch["ref_mask"] # (B, T') | |
diff_out, prior_out = self.model( | |
code=code, | |
pitch=pitch, | |
duration=duration, | |
phone_id=phone_id, | |
ref_code=ref_code, | |
phone_mask=phone_mask, | |
mask=mask, | |
ref_mask=ref_mask, | |
) | |
# pitch loss | |
pitch_loss = log_pitch_loss(prior_out["pitch_pred_log"], pitch, mask=mask) | |
total_loss += pitch_loss | |
valid_losses["pitch_loss"] = pitch_loss | |
# duration loss | |
dur_loss = log_dur_loss(prior_out["dur_pred_log"], duration, mask=phone_mask) | |
total_loss += dur_loss | |
valid_losses["dur_loss"] = dur_loss | |
x0 = self.model.module.code_to_latent(code) | |
if self.cfg.model.diffusion.diffusion_type == "diffusion": | |
# diff loss x0 | |
diff_loss_x0 = diff_loss(diff_out["x0_pred"], x0, mask=mask) | |
total_loss += diff_loss_x0 | |
valid_losses["diff_loss_x0"] = diff_loss_x0 | |
# diff loss noise | |
diff_loss_noise = diff_loss( | |
diff_out["noise_pred"], diff_out["noise"], mask=mask | |
) | |
total_loss += diff_loss_noise * self.cfg.train.diff_noise_loss_lambda | |
valid_losses["diff_loss_noise"] = diff_loss_noise | |
elif self.cfg.model.diffusion.diffusion_type == "flow": | |
# diff flow matching loss | |
flow_gt = diff_out["noise"] - x0 | |
diff_loss_flow = diff_loss(diff_out["flow_pred"], flow_gt, mask=mask) | |
total_loss += diff_loss_flow | |
valid_losses["diff_loss_flow"] = diff_loss_flow | |
# diff loss ce | |
# (nq, B, T); (nq, B, T, 1024) | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices, pred_dist = self.model.module.latent_to_code( | |
diff_out["x0_pred"], nq=code.shape[1] | |
) | |
gt_indices, _ = self.model.module.latent_to_code(x0, nq=code.shape[1]) | |
diff_loss_ce = diff_ce_loss(pred_dist, gt_indices, mask=mask) | |
total_loss += diff_loss_ce * self.cfg.train.diff_ce_loss_lambda | |
valid_losses["diff_loss_ce"] = diff_loss_ce | |
for item in valid_losses: | |
valid_losses[item] = valid_losses[item].item() | |
if self.cfg.train.diff_ce_loss_lambda > 0: | |
pred_indices_list = pred_indices.long().detach().cpu().numpy() | |
gt_indices_list = gt_indices.long().detach().cpu().numpy() | |
mask_list = batch["mask"].detach().cpu().numpy() | |
for i in range(pred_indices_list.shape[0]): | |
pred_acc = np.sum( | |
(pred_indices_list[i] == gt_indices_list[i]) * mask_list | |
) / np.sum(mask_list) | |
valid_losses["pred_acc_{}".format(str(i))] = pred_acc | |
return (total_loss.item(), valid_losses, valid_stats) | |
# def _train_epoch(self): | |
# ... | |