Spaces:
Sleeping
Sleeping
# Copyright (c) 2023 Amphion. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import torch | |
from torch.autograd import Variable | |
import torch.nn.functional as F | |
def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): | |
n_channels_int = n_channels[0] | |
in_act = input_a + input_b | |
t_act = torch.tanh(in_act[:, :n_channels_int, :]) | |
s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) | |
acts = t_act * s_act | |
return acts | |
class Invertible1x1Conv(torch.nn.Module): | |
""" | |
The layer outputs both the convolution, and the log determinant | |
of its weight matrix. If reverse=True it does convolution with | |
inverse | |
""" | |
def __init__(self, c): | |
super(Invertible1x1Conv, self).__init__() | |
self.conv = torch.nn.Conv1d( | |
c, c, kernel_size=1, stride=1, padding=0, bias=False | |
) | |
# Sample a random orthonormal matrix to initialize weights | |
W = torch.linalg.qr(torch.FloatTensor(c, c).normal_())[0] | |
# Ensure determinant is 1.0 not -1.0 | |
if torch.det(W) < 0: | |
W[:, 0] = -1 * W[:, 0] | |
W = W.view(c, c, 1) | |
self.conv.weight.data = W | |
def forward(self, z, reverse=False): | |
# shape | |
batch_size, group_size, n_of_groups = z.size() | |
W = self.conv.weight.squeeze() | |
if reverse: | |
if not hasattr(self, "W_inverse"): | |
# Reverse computation | |
W_inverse = W.float().inverse() | |
W_inverse = Variable(W_inverse[..., None]) | |
if z.type() == "torch.cuda.HalfTensor": | |
W_inverse = W_inverse.half() | |
self.W_inverse = W_inverse | |
z = F.conv1d(z, self.W_inverse, bias=None, stride=1, padding=0) | |
return z | |
else: | |
# Forward computation | |
log_det_W = batch_size * n_of_groups * torch.logdet(W) | |
z = self.conv(z) | |
return z, log_det_W | |
class WN(torch.nn.Module): | |
""" | |
This is the WaveNet like layer for the affine coupling. The primary difference | |
from WaveNet is the convolutions need not be causal. There is also no dilation | |
size reset. The dilation only doubles on each layer | |
""" | |
def __init__( | |
self, n_in_channels, n_mel_channels, n_layers, n_channels, kernel_size | |
): | |
super(WN, self).__init__() | |
assert kernel_size % 2 == 1 | |
assert n_channels % 2 == 0 | |
self.n_layers = n_layers | |
self.n_channels = n_channels | |
self.in_layers = torch.nn.ModuleList() | |
self.res_skip_layers = torch.nn.ModuleList() | |
start = torch.nn.Conv1d(n_in_channels, n_channels, 1) | |
start = torch.nn.utils.weight_norm(start, name="weight") | |
self.start = start | |
# Initializing last layer to 0 makes the affine coupling layers | |
# do nothing at first. This helps with training stability | |
end = torch.nn.Conv1d(n_channels, 2 * n_in_channels, 1) | |
end.weight.data.zero_() | |
end.bias.data.zero_() | |
self.end = end | |
cond_layer = torch.nn.Conv1d(n_mel_channels, 2 * n_channels * n_layers, 1) | |
self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") | |
for i in range(n_layers): | |
dilation = 2**i | |
padding = int((kernel_size * dilation - dilation) / 2) | |
in_layer = torch.nn.Conv1d( | |
n_channels, | |
2 * n_channels, | |
kernel_size, | |
dilation=dilation, | |
padding=padding, | |
) | |
in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") | |
self.in_layers.append(in_layer) | |
# last one is not necessary | |
if i < n_layers - 1: | |
res_skip_channels = 2 * n_channels | |
else: | |
res_skip_channels = n_channels | |
res_skip_layer = torch.nn.Conv1d(n_channels, res_skip_channels, 1) | |
res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") | |
self.res_skip_layers.append(res_skip_layer) | |
def forward(self, forward_input): | |
audio, spect = forward_input | |
audio = self.start(audio) | |
output = torch.zeros_like(audio) | |
n_channels_tensor = torch.IntTensor([self.n_channels]) | |
spect = self.cond_layer(spect) | |
for i in range(self.n_layers): | |
spect_offset = i * 2 * self.n_channels | |
acts = fused_add_tanh_sigmoid_multiply( | |
self.in_layers[i](audio), | |
spect[:, spect_offset : spect_offset + 2 * self.n_channels, :], | |
n_channels_tensor, | |
) | |
res_skip_acts = self.res_skip_layers[i](acts) | |
if i < self.n_layers - 1: | |
audio = audio + res_skip_acts[:, : self.n_channels, :] | |
output = output + res_skip_acts[:, self.n_channels :, :] | |
else: | |
output = output + res_skip_acts | |
return self.end(output) | |
class WaveGlow(torch.nn.Module): | |
def __init__(self, cfg): | |
super(WaveGlow, self).__init__() | |
self.cfg = cfg | |
self.upsample = torch.nn.ConvTranspose1d( | |
self.cfg.VOCODER.INPUT_DIM, | |
self.cfg.VOCODER.INPUT_DIM, | |
1024, | |
stride=256, | |
) | |
assert self.cfg.VOCODER.N_GROUP % 2 == 0 | |
self.n_flows = self.cfg.VOCODER.N_FLOWS | |
self.n_group = self.cfg.VOCODER.N_GROUP | |
self.n_early_every = self.cfg.VOCODER.N_EARLY_EVERY | |
self.n_early_size = self.cfg.VOCODER.N_EARLY_SIZE | |
self.WN = torch.nn.ModuleList() | |
self.convinv = torch.nn.ModuleList() | |
n_half = int(self.cfg.VOCODER.N_GROUP / 2) | |
# Set up layers with the right sizes based on how many dimensions | |
# have been output already | |
n_remaining_channels = self.cfg.VOCODER.N_GROUP | |
for k in range(self.cfg.VOCODER.N_FLOWS): | |
if k % self.n_early_every == 0 and k > 0: | |
n_half = n_half - int(self.n_early_size / 2) | |
n_remaining_channels = n_remaining_channels - self.n_early_size | |
self.convinv.append(Invertible1x1Conv(n_remaining_channels)) | |
self.WN.append( | |
WN( | |
n_half, | |
self.cfg.VOCODER.INPUT_DIM * self.cfg.VOCODER.N_GROUP, | |
self.cfg.VOCODER.N_LAYERS, | |
self.cfg.VOCODER.N_CHANNELS, | |
self.cfg.VOCODER.KERNEL_SIZE, | |
) | |
) | |
self.n_remaining_channels = n_remaining_channels # Useful during inference | |
def forward(self, forward_input): | |
""" | |
forward_input[0] = mel_spectrogram: batch x n_mel_channels x frames | |
forward_input[1] = audio: batch x time | |
""" | |
spect, audio = forward_input | |
# Upsample spectrogram to size of audio | |
spect = self.upsample(spect) | |
assert spect.size(2) >= audio.size(1) | |
if spect.size(2) > audio.size(1): | |
spect = spect[:, :, : audio.size(1)] | |
spect = spect.unfold(2, self.n_group, self.n_group).permute(0, 2, 1, 3) | |
spect = ( | |
spect.contiguous().view(spect.size(0), spect.size(1), -1).permute(0, 2, 1) | |
) | |
audio = audio.unfold(1, self.n_group, self.n_group).permute(0, 2, 1) | |
output_audio = [] | |
log_s_list = [] | |
log_det_W_list = [] | |
for k in range(self.n_flows): | |
if k % self.n_early_every == 0 and k > 0: | |
output_audio.append(audio[:, : self.n_early_size, :]) | |
audio = audio[:, self.n_early_size :, :] | |
audio, log_det_W = self.convinv[k](audio) | |
log_det_W_list.append(log_det_W) | |
n_half = int(audio.size(1) / 2) | |
audio_0 = audio[:, :n_half, :] | |
audio_1 = audio[:, n_half:, :] | |
output = self.WN[k]((audio_0, spect)) | |
log_s = output[:, n_half:, :] | |
b = output[:, :n_half, :] | |
audio_1 = torch.exp(log_s) * audio_1 + b | |
log_s_list.append(log_s) | |
audio = torch.cat([audio_0, audio_1], 1) | |
output_audio.append(audio) | |
return torch.cat(output_audio, 1), log_s_list, log_det_W_list | |
def remove_weightnorm(model): | |
waveglow = model | |
for WN in waveglow.WN: | |
WN.start = torch.nn.utils.remove_weight_norm(WN.start) | |
WN.in_layers = remove(WN.in_layers) | |
WN.cond_layer = torch.nn.utils.remove_weight_norm(WN.cond_layer) | |
WN.res_skip_layers = remove(WN.res_skip_layers) | |
return waveglow | |
def remove(conv_list): | |
new_conv_list = torch.nn.ModuleList() | |
for old_conv in conv_list: | |
old_conv = torch.nn.utils.remove_weight_norm(old_conv) | |
new_conv_list.append(old_conv) | |
return new_conv_list | |