# Pretrained Models Dependency The models dependency of Amphion are as follows (sort alphabetically): - [Pretrained Models Dependency](#pretrained-models-dependency) - [Amphion Singing BigVGAN](#amphion-singing-bigvgan) - [Amphion Speech HiFi-GAN](#amphion-speech-hifi-gan) - [ContentVec](#contentvec) - [WeNet](#wenet) - [Whisper](#whisper) - [RawNet3](#rawnet3) The instructions about how to download them is displayed as follows. ## Amphion Singing BigVGAN We fine-tune the official BigVGAN pretrained model with over 120 hours singing voice data. The fine-tuned checkpoint can be downloaded [here](https://cuhko365-my.sharepoint.com/:f:/g/personal/222042021_link_cuhk_edu_cn/EtiHh5JZ0_xGlYbyLLSoqBgBe9kI5q3ROY-SvBqefae-IA?e=dk4Pqa). You need to download the `400000.pt` and `args.json` files into `Amphion/pretrained/bigvgan`: ``` Amphion ┣ pretrained ┃ ┣ bivgan ┃ ┃ ┣ 400000.pt ┃ ┃ ┣ args.json ``` ## Amphion Speech HiFi-GAN We trained our HiFi-GAN pretrained model with 685 hours speech data. Which can be downloaded [here](https://cuhko365-my.sharepoint.com/:f:/g/personal/xueliumeng_cuhk_edu_cn/Ei24hGJO_PVBopjhKje1uzEBqfhV9h89HoLrOoy9K8tzGg?e=ka7MCO). You need to download the whole folder of `hifigan_speech` into `Amphion/pretrained/hifigan`. ``` Amphion ┣ pretrained ┃ ┣ hifigan ┃ ┃ ┣ hifigan_speech ┃ ┃ ┃ ┣ log ┃ ┃ ┃ ┣ result ┃ ┃ ┃ ┣ checkpoint ┃ ┃ ┃ ┣ args.json ``` ## ContentVec You can download the pretrained ContentVec model [here](https://github.com/auspicious3000/contentvec). Note that we use the `ContentVec_legacy-500 classes` checkpoint. Assume that you download the `checkpoint_best_legacy_500.pt` into the `Amphion/pretrained/contentvec`. ``` Amphion ┣ pretrained ┃ ┣ contentvec ┃ ┃ ┣ checkpoint_best_legacy_500.pt ``` ## WeNet You can download the pretrained WeNet model [here](https://github.com/wenet-e2e/wenet/blob/main/docs/pretrained_models.md). Take the `wenetspeech` pretrained checkpoint as an example, assume you download the `wenetspeech_u2pp_conformer_exp.tar` into the `Amphion/pretrained/wenet`. Unzip it and modify its configuration file as follows: ```sh cd Amphion/pretrained/wenet ### Unzip the expt dir tar -xvf wenetspeech_u2pp_conformer_exp.tar.gz ### Specify the updated path in train.yaml cd 20220506_u2pp_conformer_exp vim train.yaml # TODO: Change the value of "cmvn_file" (Line 2) to the absolute path of the `global_cmvn` file. (Eg: [YourPath]/Amphion/pretrained/wenet/20220506_u2pp_conformer_exp/global_cmvn) ``` The final file struture tree is like: ``` Amphion ┣ pretrained ┃ ┣ wenet ┃ ┃ ┣ 20220506_u2pp_conformer_exp ┃ ┃ ┃ ┣ final.pt ┃ ┃ ┃ ┣ global_cmvn ┃ ┃ ┃ ┣ train.yaml ┃ ┃ ┃ ┣ units.txt ``` ## Whisper The official pretrained whisper checkpoints can be available [here](https://github.com/openai/whisper/blob/e58f28804528831904c3b6f2c0e473f346223433/whisper/__init__.py#L17). In Amphion, we use the `medium` whisper model by default. You can download it as follows: ```bash cd Amphion/pretrained mkdir whisper cd whisper wget https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt ``` The final file structure tree is like: ``` Amphion ┣ pretrained ┃ ┣ whisper ┃ ┃ ┣ medium.pt ``` ## RawNet3 The official pretrained RawNet3 checkpoints can be available [here](https://huggingface.co/jungjee/RawNet3). You need to download the `model.pt` file and put it in the folder. The final file structure tree is like: ``` Amphion ┣ pretrained ┃ ┣ rawnet3 ┃ ┃ ┣ model.pt ```