itzjunayed's picture
Create app.py
fa811d4 verified
raw
history blame
1.02 kB
import gradio as gr
import tensorflow as tf
import numpy as np
from keras.utils import normalize
def dice_coef(y_true, y_pred):
smooth = 1e-5
intersection = K.sum(y_true * y_pred, axis=[1, 2, 3])
union = K.sum(y_true, axis=[1, 2, 3]) + K.sum(y_pred, axis=[1, 2, 3])
return K.mean((2.0 * intersection + smooth) / (union + smooth), axis=0)
def predict_segmentation(image):
SIZE_X = 128
SIZE_Y = 128
img = cv2.resize(image, (SIZE_Y, SIZE_X))
img = np.expand_dims(img, axis=2)
img = normalize(img, axis=1)
# Prepare image for prediction
img = np.expand_dims(img, axis=0)
# Predict
prediction = model.predict(img)
predicted_img = np.argmax(prediction, axis=3)[0, :, :]
return predicted_img
# Load the model
model = tf.keras.models.load_model("path_to_your_model_directory", custom_objects={'dice_coef': dice_coef})
# Gradio Interface
iface = gr.Interface(
fn=predict_segmentation,
inputs="image",
outputs="image",
live=False
)
iface.launch()