iris / app.py
Jimin Park
updated req.txt and app.py
0854291
raw
history blame
6.47 kB
from transformers import pipeline
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel, PeftConfig
import gradio as gr
base_model = "unsloth/Llama-3.2-3B-Instruct" # Replace with the correct base model
peft_model_path = "ivwhy/lora_model"
config = PeftConfig.from_pretrained(peft_model_path)
model = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.bfloat16)
model = PeftModel.from_pretrained(model, peft_model_path)
tokenizer = AutoTokenizer.from_pretrained(base_model)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=-1, # CPU
)
chatbot = pipeline
message_list = []
response_list = []
def chat_function(message, history, system_prompt, max_new_tokens, temperature):
messages = [{"role":"system","content":system_prompt},
{"role":"user","content":message}]
prompt = pipeline.tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,)
terminators = [
pipeline.tokenizer.eos_token_id,
pipeline.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
outputs = pipeline(
prompt,
max_new_tokens = max_new_tokens,
eos_token_id = terminators,
do_sample = True,
temperature = 0.1,
top_p = 0.9,)
return outputs[0]["generated_text"][len(prompt):]
demo_chatbot = gr.ChatInterface(
chat_function,
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
chatbot=gr.Chatbot(height=400),
additional_inputs=[
gr.Textbox("You are helpful AI", label="System Prompt"),
gr.Slider(500,4000, label="Max New Tokens"),
gr.Slider(0,1,label="Temperature")
])
demo_chatbot.launch()
''' =================================== OLD VERSION ==============================================
import torch
import transformers
import gradio as gr
from unsloth import FastLanguageModel
# Load the fine-tuned Unsloth model
max_seq_length = 2048 # Adjust based on your training
dtype = None # Auto-detect is fine for CPU
def load_model():
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="ivwhy/lora_model", # Your fine-tuned model path
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=True, # Keep 4-bit loading enabled
)
# Optional: Add special tokens for chat if needed
tokenizer.pad_token = tokenizer.eos_token
# Create the pipeline for CPU
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=-1 # Force CPU usage
)
return pipeline, tokenizer
# Load model globally
generation_pipeline, tokenizer = load_model()
def chat_function(message, history, system_prompt, max_new_tokens, temperature):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
]
# Apply chat template
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
# Define terminators
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
# Generate response
outputs = generation_pipeline(
prompt,
max_new_tokens=max_new_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=temperature,
top_p=0.9,
)
# Extract and return just the generated text
return outputs[0]["generated_text"][len(prompt):]
# Create Gradio interface
demo = gr.ChatInterface(
chat_function,
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
chatbot=gr.Chatbot(height=400),
additional_inputs=[
gr.Textbox("You are helpful AI", label="System Prompt"),
gr.Slider(minimum=1, maximum=4000, value=500, label="Max New Tokens"),
gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
]
)
if __name__ == "__main__":
demo.launch()
================================== OLD VER ==============================
import torch
import transformers
import gradio as gr
from unsloth import FastLanguageModel
# Load the fine-tuned Unsloth model
max_seq_length = 2048 # Adjust based on your training
dtype = None # None for auto detection
def load_model():
model, tokenizer = FastLanguageModel.from_pretrained(
model_name="ivwhy/lora_model", # Your fine-tuned model path
max_seq_length=max_seq_length,
dtype=dtype,
load_in_4bit=True # Optional: load in 4-bit for efficiency
)
# Optional: Add special tokens for chat if needed
tokenizer.pad_token = tokenizer.eos_token
# Create the pipeline
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
)
return pipeline, tokenizer
# Load model globally
generation_pipeline, tokenizer = load_model()
def chat_function(message, history, system_prompt, max_new_tokens, temperature):
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": message}
]
# Apply chat template
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True,
)
# Define terminators
terminators = [
tokenizer.eos_token_id,
tokenizer.convert_tokens_to_ids("<|eot_id|>")
]
# Generate response
outputs = generation_pipeline(
prompt,
max_new_tokens=max_new_tokens,
eos_token_id=terminators,
do_sample=True,
temperature=temperature,
top_p=0.9,
)
# Extract and return just the generated text
return outputs[0]["generated_text"][len(prompt):]
# Create Gradio interface
demo = gr.ChatInterface(
chat_function,
textbox=gr.Textbox(placeholder="Enter message here", container=False, scale=7),
chatbot=gr.Chatbot(height=400),
additional_inputs=[
gr.Textbox("You are helpful AI", label="System Prompt"),
gr.Slider(minimum=1, maximum=4000, value=500, label="Max New Tokens"),
gr.Slider(minimum=0, maximum=1, value=0.7, label="Temperature")
]
)
if __name__ == "__main__":
demo.launch()
'''