Spaces:
Runtime error
Runtime error
j-hartmann
commited on
Commit
·
284038e
1
Parent(s):
861be86
Update app.py
Browse files
app.py
CHANGED
@@ -1,17 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import numpy as np
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
)
|
10 |
-
sepia_img = input_img.dot(sepia_filter.T)
|
11 |
-
sepia_img /= sepia_img.max()
|
12 |
-
return sepia_img
|
13 |
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
1 |
+
# imports
|
2 |
+
import gradio as gr
|
3 |
+
import pandas as pd
|
4 |
+
import tempfile
|
5 |
+
import itertools
|
6 |
+
# import required packages
|
7 |
+
import torch
|
8 |
+
import pandas as pd
|
9 |
import numpy as np
|
10 |
+
from numpy import dot
|
11 |
+
from numpy.linalg import norm, multi_dot
|
12 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification, Trainer
|
13 |
|
14 |
+
# load tokenizer and model, create trainer
|
15 |
+
model_name = "j-hartmann/emotion-english-distilroberta-base"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
18 |
+
trainer = Trainer(model=model)
|
19 |
+
|
20 |
+
# compute dot product of inputs
|
21 |
+
# summary function - test for single gradio function interfrace
|
22 |
+
def gr_cosine_similarity(sentence1, sentence2):
|
23 |
+
# Create class for data preparation
|
24 |
+
class SimpleDataset:
|
25 |
+
def __init__(self, tokenized_texts):
|
26 |
+
self.tokenized_texts = tokenized_texts
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return len(self.tokenized_texts["input_ids"])
|
30 |
+
|
31 |
+
def __getitem__(self, idx):
|
32 |
+
return {k: v[idx] for k, v in self.tokenized_texts.items()}
|
33 |
+
|
34 |
+
# sentences in list
|
35 |
+
lines_s = [sentence1, sentence2]
|
36 |
+
print(type(sentence1), type(sentence2))
|
37 |
+
print(sentence1, sentence2)
|
38 |
+
print(lines_s)
|
39 |
+
|
40 |
+
# Tokenize texts and create prediction data set
|
41 |
+
tokenized_texts = tokenizer(lines_s, truncation=True, padding=True)
|
42 |
+
pred_dataset = SimpleDataset(tokenized_texts)
|
43 |
+
|
44 |
+
# Run predictions -> predict whole df
|
45 |
+
predictions = trainer.predict(pred_dataset)
|
46 |
+
|
47 |
+
# Transform predictions to labels
|
48 |
+
preds = predictions.predictions.argmax(-1)
|
49 |
+
labels = pd.Series(preds).map(model.config.id2label)
|
50 |
+
scores = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1,keepdims=True)).max(1)
|
51 |
+
# scores raw
|
52 |
+
temp = (np.exp(predictions[0])/np.exp(predictions[0]).sum(-1, keepdims=True)).tolist()
|
53 |
+
|
54 |
+
|
55 |
+
# work in progress
|
56 |
+
# container
|
57 |
+
anger = []
|
58 |
+
disgust = []
|
59 |
+
fear = []
|
60 |
+
joy = []
|
61 |
+
neutral = []
|
62 |
+
sadness = []
|
63 |
+
surprise = []
|
64 |
+
|
65 |
+
print(temp)
|
66 |
+
# extract scores (as many entries as exist in pred_texts)
|
67 |
+
for i in range(len(lines_s)):
|
68 |
+
anger.append(temp[i][0])
|
69 |
+
disgust.append(temp[i][1])
|
70 |
+
fear.append(temp[i][2])
|
71 |
+
joy.append(temp[i][3])
|
72 |
+
neutral.append(temp[i][4])
|
73 |
+
sadness.append(temp[i][5])
|
74 |
+
surprise.append(temp[i][6])
|
75 |
+
|
76 |
+
# define both vectors for the dot product
|
77 |
+
# each include all values for both predictions
|
78 |
+
v1 = temp[0]
|
79 |
+
v2 = temp[1]
|
80 |
+
print(type(v1), type(v2))
|
81 |
+
# compute dot product of all
|
82 |
+
dot_product = dot(v1, v2)
|
83 |
|
84 |
+
# define df
|
85 |
+
df = pd.DataFrame(list(zip(lines_s,labels, anger, disgust, fear, joy, neutral, sadness, surprise)), columns=['text','label', 'anger', 'disgust', 'fear', 'joy', 'neutral', 'sadness', 'surprise'])
|
86 |
|
87 |
+
# compute cosine similarity
|
88 |
+
# is dot product of vectors n / norms 1*..*n vectors
|
89 |
+
cosine_similarity = dot_product / (norm(v1) * norm(v2))
|
|
|
|
|
|
|
|
|
90 |
|
91 |
|
92 |
+
# return dataframe for space output
|
93 |
+
return df, cosine_similarity
|
94 |
+
|
95 |
+
gr.Interface(gr_cosine_similarity,
|
96 |
+
[
|
97 |
+
gr.inputs.Textbox(lines=1, placeholder="This movie always makes me cry..", default="", label="Text 1"),
|
98 |
+
gr.inputs.Textbox(lines=1, placeholder="Her dog is sad.", default="", label="Text 2"),
|
99 |
|
100 |
+
#gr.outputs.Textbox(type="auto", label="Cosine similarity"),
|
101 |
+
],
|
102 |
+
["dataframe","text"]
|
103 |
+
).launch(debug=True)
|