File size: 3,062 Bytes
e959087
 
d9d6c5f
 
e959087
d9d6c5f
 
 
 
e3c5eb3
d9d6c5f
 
 
 
6698b86
 
d9d6c5f
 
 
 
 
 
bb665f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9d6c5f
49cdeed
d9d6c5f
 
5e884e7
 
 
 
 
 
 
 
 
 
 
 
d9d6c5f
 
 
 
 
 
 
 
bb665f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9d6c5f
bb665f7
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
import gradio as gr

# def greet(name):
#     return "Hello " + name + "!!"

# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
# iface.launch()

import spaces
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, pipeline, set_seed

device = "cuda:0" if torch.cuda.is_available() else "cpu"

repo_id = "j2moreno/test-model"

model = AutoModelForCausalLM.from_pretrained(repo_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)

SEED = 42

default_text = "Ask me about Leonardo Moreno"
title = "Who is Leonardo Moreno"

### This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. This space is running on Inference Endpoints using text-generation-inference library. If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://ui.endpoints.huggingface.co/).

description = """
This Space is... [placeholder]
"""
css = """.toast-wrap { display: none !important } """
examples=[
    ['Who is Leonardo Moreno?'],
    ['Describe Leonardo Moreno\'s professional background.'],
    ['What projects has Leonardo Moreno worked on?'],
    ["What are Leonardo Moreno's core technical skills?"],
    ['How has Leonardo Moreno integrated AI in his work?'],
]

# def vote(data: gr.LikeData):
#     if data.liked:
#         print("You upvoted this response: " + data.value)
#     else:
#         print("You downvoted this response: " + data.value)
        
@spaces.GPU
def generate_response(message, chatbot, system_prompt="",):
    set_seed(SEED)

    if system_prompt != "":
        input_prompt = f"<s>[INST] <<SYS>>\n{system_prompt}\n<</SYS>>\n\n "
    else:
        input_prompt = f"<s>[INST] "

    for interaction in chatbot:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s>[INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "
    print(input_prompt)

    tokenized_prompt = tokenizer(input_prompt, return_tensors="pt", padding=True, truncation=True, max_length=128)
    # print(tokenized_prompt)

    output_sequences = model.generate(**tokenized_prompt, max_length=1024, num_return_sequences=1)
    decoded_output = tokenizer.decode(output_sequences[0], skip_special_tokens=True)
    # print(decoded_output)

    return decoded_output

chatbot_stream = gr.Chatbot()
chat_interface_stream = gr.ChatInterface(generate_response, 
                 title=title, 
                 description=description, 
                 textbox=gr.Textbox(),
                 chatbot=chatbot_stream,
                 css=css, 
                 examples=examples, 
                 #cache_examples=True, 
                 #additional_inputs=additional_inputs,
                 ) 

# Gradio Demo 
with gr.Blocks() as demo:
    # streaming chatbot
    # chatbot_stream.like(vote, None, None)
    chat_interface_stream.render()
        
demo.queue(max_size=100).launch()