Spaces:
Runtime error
Runtime error
Update
Browse files
app.py
CHANGED
@@ -1,12 +1,4 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
# def greet(name):
|
4 |
-
# return "Hello " + name + "!!"
|
5 |
-
|
6 |
-
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
7 |
-
# iface.launch()
|
8 |
-
|
9 |
-
# import spaces
|
10 |
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, pipeline, set_seed
|
12 |
|
@@ -20,15 +12,21 @@ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
|
|
20 |
|
21 |
SEED = 42
|
22 |
|
23 |
-
|
24 |
-
title = "Who is Leonardo Moreno"
|
25 |
|
26 |
### This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. This space is running on Inference Endpoints using text-generation-inference library. If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://ui.endpoints.huggingface.co/).
|
27 |
|
28 |
description = """
|
29 |
-
This Space
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
"""
|
31 |
-
css = """.toast-wrap { display: none !important } """
|
32 |
# examples=[
|
33 |
# ['Who is Leonardo Moreno?'],
|
34 |
# ['Describe Leonardo Moreno\'s professional background.'],
|
@@ -37,27 +35,9 @@ css = """.toast-wrap { display: none !important } """
|
|
37 |
# ['How has Leonardo Moreno integrated AI in his work?'],
|
38 |
# ]
|
39 |
|
40 |
-
# def vote(data: gr.LikeData):
|
41 |
-
# if data.liked:
|
42 |
-
# print("You upvoted this response: " + data.value)
|
43 |
-
# else:
|
44 |
-
# print("You downvoted this response: " + data.value)
|
45 |
-
|
46 |
# @spaces.GPU
|
47 |
def generate_response(message, history):
|
48 |
set_seed(SEED)
|
49 |
-
# data = {
|
50 |
-
# "role": "user",
|
51 |
-
# "content": message
|
52 |
-
# }
|
53 |
-
# tokenized_prompt = tokenizer(data["content"], return_tensors="pt", padding=True, truncation=True, max_length=128)
|
54 |
-
# print(tokenized_prompt)
|
55 |
-
|
56 |
-
# output_sequences = model.generate(**tokenized_prompt, max_length=1024, num_return_sequences=1)
|
57 |
-
# decoded_output = tokenizer.batch_decode(output_sequences, skip_special_tokens=True)[0]
|
58 |
-
# print(decoded_output)
|
59 |
-
|
60 |
-
# yield decoded_output
|
61 |
temperature=0.4
|
62 |
top_p=0.95
|
63 |
top_k=50
|
@@ -79,36 +59,11 @@ def generate_response(message, history):
|
|
79 |
print(outputs[0]["generated_text"])
|
80 |
return outputs[0]["generated_text"]
|
81 |
|
82 |
-
|
83 |
-
|
84 |
title=title,
|
85 |
description=description,
|
86 |
-
|
87 |
-
# chatbot=chatbot_stream,
|
88 |
-
css=css,
|
89 |
-
# examples=examples,
|
90 |
#cache_examples=True,
|
91 |
#additional_inputs=additional_inputs,
|
92 |
-
)
|
93 |
-
|
94 |
-
# Gradio Demo
|
95 |
-
with gr.Blocks() as demo:
|
96 |
-
# streaming chatbot
|
97 |
-
# chatbot_stream.like(vote, None, None)
|
98 |
-
chat_interface_stream.render()
|
99 |
-
|
100 |
-
if __name__ == "__main__":
|
101 |
-
demo.queue().launch(share=True)
|
102 |
-
|
103 |
-
|
104 |
-
# messages = [
|
105 |
-
# {
|
106 |
-
# "role": "system",
|
107 |
-
# "content": "You are a friendly chatbot who always responds in the style of a thug",
|
108 |
-
# },
|
109 |
-
# {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
|
110 |
-
# ]
|
111 |
-
# model_inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to("cuda")
|
112 |
-
# input_length = model_inputs.shape[1]
|
113 |
-
# generated_ids = model.generate(model_inputs, do_sample=True, max_new_tokens=20)
|
114 |
-
# print(tokenizer.batch_decode(generated_ids[:, input_length:], skip_special_tokens=True)[0])
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments, pipeline, set_seed
|
4 |
|
|
|
12 |
|
13 |
SEED = 42
|
14 |
|
15 |
+
title = "Who is Leonardo Moreno?"
|
|
|
16 |
|
17 |
### This Space demonstrates model [Llama-2-70b-chat-hf](https://huggingface.co/meta-llama/Llama-2-70b-chat-hf) by Meta, a Llama 2 model with 70B parameters fine-tuned for chat instructions. This space is running on Inference Endpoints using text-generation-inference library. If you want to run your own service, you can also [deploy the model on Inference Endpoints](https://ui.endpoints.huggingface.co/).
|
18 |
|
19 |
description = """
|
20 |
+
This Space demonstrates a finetuned [TinyLlama-1.1B-Chat-v1.0](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) that was trained on information about Leonardo Moreno. **Ask it anything about Leonardo Moreno**
|
21 |
+
|
22 |
+
Model: [j2moreno/TinyLlama-1.1B-Chat-v1.0-leo-finetuned](https://huggingface.co/j2moreno/TinyLlama-1.1B-Chat-v1.0-leo-finetuned)
|
23 |
+
|
24 |
+
Leonardo Moreno contacts:
|
25 |
+
- [LinkedIn](https://www.linkedin.com/in/jose-leonardo-moreno-/)
|
26 |
+
- [Github](https://github.com/j2moreno)
|
27 |
+
|
28 |
+
**Warning:** This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
|
29 |
"""
|
|
|
30 |
# examples=[
|
31 |
# ['Who is Leonardo Moreno?'],
|
32 |
# ['Describe Leonardo Moreno\'s professional background.'],
|
|
|
35 |
# ['How has Leonardo Moreno integrated AI in his work?'],
|
36 |
# ]
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
# @spaces.GPU
|
39 |
def generate_response(message, history):
|
40 |
set_seed(SEED)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
temperature=0.4
|
42 |
top_p=0.95
|
43 |
top_k=50
|
|
|
59 |
print(outputs[0]["generated_text"])
|
60 |
return outputs[0]["generated_text"]
|
61 |
|
62 |
+
if __name__ == "__main__":
|
63 |
+
gr.ChatInterface(generate_response,
|
64 |
title=title,
|
65 |
description=description,
|
66 |
+
#examples=examples,
|
|
|
|
|
|
|
67 |
#cache_examples=True,
|
68 |
#additional_inputs=additional_inputs,
|
69 |
+
).launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|