Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import os | |
import shutil | |
import spaces | |
import sys | |
# we will clone the repo and install the dependencies | |
os.system('git lfs install') | |
os.system('git clone https://huggingface.co/jadechoghari/qa-mdt') | |
os.system('pip install -r qa_mdt/requirements.txt') | |
os.system('pip install xformers==0.0.26.post1') | |
os.system('pip install torchlibrosa==0.0.9 librosa==0.9.2') | |
os.system('pip install -q pytorch_lightning==2.1.3 torchlibrosa==0.0.9 librosa==0.9.2 ftfy==6.1.1 braceexpand') | |
os.system('pip install torch==2.3.0+cu121 torchvision==0.18.0+cu121 torchaudio==2.3.0 --index-url https://download.pytorch.org/whl/cu121') | |
sys.path.append(os.path.abspath("qa_mdt")) | |
# only then import the necessary modules from qa_mdt | |
from qa_mdt.pipeline import MOSDiffusionPipeline | |
pipe = MOSDiffusionPipeline() | |
# this runs the pipeline with user input and saves the output as 'awesome.wav' | |
def generate_waveform(description): | |
pipe(description) | |
generated_file_path = "./awesome.wav" | |
if os.path.exists(generated_file_path): | |
return generated_file_path | |
else: | |
return "Error: Failed to generate the waveform." | |
# gradio interface | |
iface = gr.Interface( | |
fn=generate_waveform, | |
inputs=gr.inputs.Textbox(lines=2, placeholder="Enter a music description here..."), # Text input for description | |
outputs=gr.outputs.File(label="Download Generated WAV file"), # File output for download | |
title="Flux Music Diffusion Pipeline", | |
description="Enter a music description, and the model will generate a corresponding audio waveform. Download the output as 'awesome.wav'." | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
iface.launch() | |