File size: 8,686 Bytes
1342b13
714db0a
1342b13
151137d
 
 
1342b13
151137d
 
714db0a
1342b13
3bdab0b
151137d
 
 
 
e3feb3f
1342b13
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714db0a
 
1342b13
151137d
3bdab0b
 
 
 
 
151137d
1342b13
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bdab0b
151137d
 
 
3bdab0b
151137d
 
 
 
 
 
 
 
 
 
 
1342b13
3bdab0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342b13
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3bdab0b
 
 
 
 
 
151137d
 
 
 
 
 
 
 
 
 
3bdab0b
 
 
 
 
 
 
 
 
 
 
151137d
 
 
 
 
 
 
3bdab0b
151137d
 
3bdab0b
151137d
 
3bdab0b
151137d
3bdab0b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import gradio as gr
from inference import inference_and_run
import spaces
import os
import re
import shutil

model_name = 'Ferret-UI'
cur_dir = os.path.dirname(os.path.abspath(__file__))

@spaces.GPU()
def inference_with_gradio(chatbot, image, prompt, model_path, box=None, temperature=0.2, top_p=0.7, max_new_tokens=512):
    dir_path = os.path.dirname(image)
    # image_path = image
    # Define the directory where you want to save the image (current directory)
    filename = os.path.basename(image)
    dir_path = "./"

    # Create the new path for the file (in the current directory)
    image_path = os.path.join(dir_path, filename)
    shutil.copy(image, image_path)
    print("filename path: ", filename)
    if "gemma" in model_path.lower():
        conv_mode = "ferret_gemma_instruct"
    else:
        conv_mode = "ferret_llama_3"
    
    # inference_text = inference_and_run(
    #     image_path=image_path,
    #     prompt=prompt,
    #     conv_mode=conv_mode,
    #     model_path=model_path,
    #     box=box
    # )
    inference_text = inference_and_run(
        image_path=filename, # double check this
        image_dir=dir_path,
        prompt=prompt,
        model_path="jadechoghari/Ferret-UI-Gemma2b",
        conv_mode=conv_mode,
        temperature=temperature, 
        top_p=top_p,
        box=box,
        max_new_tokens=max_new_tokens,
        # stop=stop    # Assuming we want to process the image
        )
    
    # print("done, now appending", inference_text)
    # chatbot.append((prompt, inference_text))
    # return chatbot
    # Convert inference_text to string if it's not already
    if isinstance(inference_text, (list, tuple)):
        inference_text = str(inference_text[0])
        
    # Update chatbot history with new message pair
    new_history = chatbot.copy() if chatbot else []
    new_history.append((prompt, inference_text))
    return new_history

def submit_chat(chatbot, text_input):
    response = ''
    # chatbot.append((text_input, response))
    return chatbot, ''

def clear_chat():
    return [], None, "", "", 0.2, 0.7, 512

with open(f"{cur_dir}/logo.svg", "r", encoding="utf-8") as svg_file:
    svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
    <span style="display: inline-block; vertical-align: middle;">{model_name}</span>
</p>
<center><font size=3><b>{model_name}</b> Demo: Upload an image, provide a prompt, and get insights using advanced AI models. <a href='https://huggingface.co/jadechoghari/Ferret-UI-Gemma2b'>😊 Huggingface</a></font></center>
"""
with open(f"{cur_dir}/ferretui_icon.png", "rb") as image_file:
    image_data = image_file.read()
# html = f"""
# <p align="center">
#     <img src='data:image/png;base64,{image_data.encode("base64").decode("utf-8")}' alt='Ferret-UI' style='width: 100px; vertical-align: middle; border-radius: 15px; box-shadow: 0px 4px 10px rgba(0, 0, 0, 0.1);'/>
#     <span style="font-size: 2em; font-weight: bold; margin-left: 10px; vertical-align: middle;">{model_name}</span>
# </p>
# <center><font size=3><b>{model_name}</b> Demo: Upload an image, provide a prompt, and get insights using advanced AI models. <a href='https://huggingface.co/jadechoghari/Ferret-UI-Gemma2b'>😊 Huggingface</a></font></center>
# """

html = f"""
<div style="text-align: center; padding: 20px;">
    <div style="display: inline-block; background-color: #f5f5f7; padding: 20px; border-radius: 20px; box-shadow: 0px 6px 20px rgba(0, 0, 0, 0.1);">
        <div style="display: flex; align-items: center;">
            <img src='https://github.com/apple/ml-ferret/blob/main/ferretui/figs/ferretui_icon.png?raw=true' alt='Ferret-UI' 
                style='width: 80px; height: 80px; border-radius: 20px; box-shadow: 0px 8px 16px rgba(0, 0, 0, 0.2);'/>
            <div style="margin-left: 15px;">
                <h1 style="font-size: 2.8em; font-family: -apple-system, BlinkMacSystemFont, sans-serif; color: #1D1D1F; 
                font-weight: bold; margin-bottom: 0;">ο£Ώ {model_name}</h1>
                <p style="font-size: 1.2em; color: #6e6e73; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 5px;">
                    πŸ“± Grounded Mobile UI Understanding with Multimodal LLMs.<br>
                    A new MLLM tailored for enhanced understanding of mobile UI screens, equipped with referring, grounding, and reasoning capabilities.
                </p>
                <a href='https://huggingface.co/jadechoghari/Ferret-UI-Gemma2b' style='text-decoration: none;'>
                    <button style="background-color: #007aff; color: white; font-size: 1.2em; padding: 10px 20px; border-radius: 10px; border: none; margin-top: 10px; box-shadow: 0px 4px 12px rgba(0, 122, 255, 0.4); cursor: pointer;">
                        πŸ€— Try on Hugging Face
                    </button>
                </a>
            </div>
        </div>
    </div>
    <p style="font-size: 1.2em; color: #86868B; font-family: -apple-system, BlinkMacSystemFont, sans-serif; margin-top: 30px;">
        We release two Ferret-UI checkpoints, built on gemma-2b and Llama-3-8B models respectively, for public exploration. πŸš€
    </p>
</div>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }]

# Set up UI components
image_input = gr.Image(label="Upload Image", type="filepath", height=350)
text_input = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
model_dropdown = gr.Dropdown(choices=[
    "jadechoghari/Ferret-UI-Gemma2b",
    "jadechoghari/Ferret-UI-Llama8b",
], label="Model Path", value="jadechoghari/Ferret-UI-Gemma2b")

bounding_box_input = gr.Textbox(placeholder="Optional bounding box (x1, y1, x2, y2)", label="Bounding Box (optional)")
# Adding Sliders for temperature, top_p, and max_new_tokens
temperature_input = gr.Slider(minimum=0.1, maximum=2.0, step=0.1, value=0.2, label="Temperature")
top_p_input = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.7, label="Top P")
max_new_tokens_input = gr.Slider(minimum=1, maximum=1024, step=1, value=512, label="Max New Tokens")


chatbot = gr.Chatbot(label="Chat with Ferret-UI", height=400, show_copy_button=True, latex_delimiters=latex_delimiters_set)

with gr.Blocks(title=model_name, theme=gr.themes.Ocean()) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            image_input.render()
            text_input.render()
            model_dropdown.render()
            bounding_box_input.render()
            temperature_input.render()    # Render temperature input
            top_p_input.render()          # Render top_p input
            max_new_tokens_input.render()
            gr.Examples(
                examples=[
                    ["appstore_reminders.png", "Describe the image in details", "jadechoghari/Ferret-UI-Gemma2b", None],
                    ["appstore_reminders.png", "What's inside the selected region?", "jadechoghari/Ferret-UI-Gemma2b", "189, 906, 404, 970"],
                    ["appstore_reminders.png", "Where is the Game Tab?", "jadechoghari/Ferret-UI-Gemma2b", None],
                ],
                inputs=[image_input, text_input, model_dropdown, bounding_box_input]
            )
        with gr.Column(scale=7):
            chatbot.render()
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")

    send_click_event = send_btn.click(
        inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input], chatbot
    ).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
    submit_event = text_input.submit(
        inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input], chatbot
    ).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
    
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, bounding_box_input, temperature_input, top_p_input, max_new_tokens_input])

demo.launch()