Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,352 Bytes
1342b13 714db0a 1342b13 151137d 1342b13 151137d 714db0a 1342b13 151137d e3feb3f 1342b13 151137d 714db0a 1342b13 151137d 1342b13 151137d 1342b13 151137d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 |
import gradio as gr
from inference import inference_and_run
import spaces
import os
import re
import shutil
model_name = 'Ferret-UI'
cur_dir = os.path.dirname(os.path.abspath(__file__))
@spaces.GPU()
def inference_with_gradio(chatbot, image, prompt, model_path, box=None):
dir_path = os.path.dirname(image)
# image_path = image
# Define the directory where you want to save the image (current directory)
filename = os.path.basename(image)
dir_path = "./"
# Create the new path for the file (in the current directory)
image_path = os.path.join(dir_path, filename)
shutil.copy(image, image_path)
print("filename path: ", filename)
if "gemma" in model_path.lower():
conv_mode = "ferret_gemma_instruct"
else:
conv_mode = "ferret_llama_3"
# inference_text = inference_and_run(
# image_path=image_path,
# prompt=prompt,
# conv_mode=conv_mode,
# model_path=model_path,
# box=box
# )
inference_text = inference_and_run(
image_path=filename, # double check this
image_dir=dir_path,
prompt=prompt,
model_path="jadechoghari/Ferret-UI-Gemma2b",
conv_mode=conv_mode, # Default mode from the original function
# temperature=temperature,
# top_p=top_p,
# max_new_tokens=max_new_tokens,
# stop=stop # Assuming we want to process the image
)
# print("done, now appending", inference_text)
# chatbot.append((prompt, inference_text))
# return chatbot
# Convert inference_text to string if it's not already
if isinstance(inference_text, (list, tuple)):
inference_text = str(inference_text[0])
# Update chatbot history with new message pair
new_history = chatbot.copy() if chatbot else []
new_history.append((prompt, inference_text))
return new_history
def submit_chat(chatbot, text_input):
response = ''
chatbot.append((text_input, response))
return chatbot, ''
def clear_chat():
return [], None, ""
with open(f"{cur_dir}/logo.svg", "r", encoding="utf-8") as svg_file:
svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
<span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
<span style="display: inline-block; vertical-align: middle;">{model_name}</span>
</p>
<center><font size=3><b>{model_name}</b> Demo: Upload an image, provide a prompt, and get insights using advanced AI models. <a href='https://huggingface.co/jadechoghari/Ferret-UI-Gemma2b'>π Huggingface</a></font></center>
"""
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": False
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
}]
# Set up UI components
image_input = gr.Image(label="Upload Image", type="filepath", height=350)
text_input = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
model_dropdown = gr.Dropdown(choices=[
"jadechoghari/Ferret-UI-Gemma2b",
"jadechoghari/Ferret-UI-Llama8b",
], label="Model Path", value="jadechoghari/Ferret-UI-Gemma2b")
bounding_box_input = gr.Textbox(placeholder="Optional bounding box (x1, y1, x2, y2)", label="Bounding Box (optional)")
chatbot = gr.Chatbot(label="Chat with Ferret-UI", height=400, show_copy_button=True, latex_delimiters=latex_delimiters_set)
with gr.Blocks(title=model_name, theme=gr.themes.Ocean()) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(scale=3):
# gr.Examples(
# examples=[
# ["appstore_reminders.png", "Describe the image in details", "jadechoghari/Ferret-UI-Gemma2b", None],
# ["appstore_reminders.png", "What's inside the selected region?", "jadechoghari/Ferret-UI-Gemma2b", "189, 906, 404, 970"],
# ["appstore_reminders.png", "Where is the Game Tab?", "jadechoghari/Ferret-UI-Gemma2b", None],
# ],
# inputs=[image_input, text_input, model_dropdown, bounding_box_input]
# )
image_input.render()
text_input.render()
model_dropdown.render()
bounding_box_input.render()
with gr.Column(scale=7):
chatbot.render()
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
send_click_event = send_btn.click(
inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input], chatbot
).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
submit_event = text_input.submit(
inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input], chatbot
).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, bounding_box_input])
demo.launch()
|