File size: 5,352 Bytes
1342b13
714db0a
1342b13
151137d
 
 
1342b13
151137d
 
714db0a
1342b13
151137d
 
 
 
 
e3feb3f
1342b13
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
714db0a
 
1342b13
151137d
 
 
 
 
 
1342b13
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1342b13
 
151137d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import gradio as gr
from inference import inference_and_run
import spaces
import os
import re
import shutil

model_name = 'Ferret-UI'
cur_dir = os.path.dirname(os.path.abspath(__file__))

@spaces.GPU()
def inference_with_gradio(chatbot, image, prompt, model_path, box=None):
    dir_path = os.path.dirname(image)
    # image_path = image
    # Define the directory where you want to save the image (current directory)
    filename = os.path.basename(image)
    dir_path = "./"

    # Create the new path for the file (in the current directory)
    image_path = os.path.join(dir_path, filename)
    shutil.copy(image, image_path)
    print("filename path: ", filename)
    if "gemma" in model_path.lower():
        conv_mode = "ferret_gemma_instruct"
    else:
        conv_mode = "ferret_llama_3"
    
    # inference_text = inference_and_run(
    #     image_path=image_path,
    #     prompt=prompt,
    #     conv_mode=conv_mode,
    #     model_path=model_path,
    #     box=box
    # )
    inference_text = inference_and_run(
        image_path=filename, # double check this
        image_dir=dir_path,
        prompt=prompt,
        model_path="jadechoghari/Ferret-UI-Gemma2b",
        conv_mode=conv_mode,  # Default mode from the original function
        # temperature=temperature, 
        # top_p=top_p,
        # max_new_tokens=max_new_tokens,
        # stop=stop    # Assuming we want to process the image
        )
    
    # print("done, now appending", inference_text)
    # chatbot.append((prompt, inference_text))
    # return chatbot
    # Convert inference_text to string if it's not already
    if isinstance(inference_text, (list, tuple)):
        inference_text = str(inference_text[0])
        
    # Update chatbot history with new message pair
    new_history = chatbot.copy() if chatbot else []
    new_history.append((prompt, inference_text))
    return new_history

def submit_chat(chatbot, text_input):
    response = ''
    chatbot.append((text_input, response))
    return chatbot, ''

def clear_chat():
    return [], None, ""

with open(f"{cur_dir}/logo.svg", "r", encoding="utf-8") as svg_file:
    svg_content = svg_file.read()
font_size = "2.5em"
svg_content = re.sub(r'(<svg[^>]*)(>)', rf'\1 height="{font_size}" style="vertical-align: middle; display: inline-block;"\2', svg_content)
html = f"""
<p align="center" style="font-size: {font_size}; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">{svg_content}</span>
    <span style="display: inline-block; vertical-align: middle;">{model_name}</span>
</p>
<center><font size=3><b>{model_name}</b> Demo: Upload an image, provide a prompt, and get insights using advanced AI models. <a href='https://huggingface.co/jadechoghari/Ferret-UI-Gemma2b'>😊 Huggingface</a></font></center>
"""

latex_delimiters_set = [{
        "left": "\\(",
        "right": "\\)",
        "display": False 
    }, {
        "left": "\\begin{equation}",
        "right": "\\end{equation}",
        "display": True 
    }, {
        "left": "\\begin{align}",
        "right": "\\end{align}",
        "display": True
    }]

# Set up UI components
image_input = gr.Image(label="Upload Image", type="filepath", height=350)
text_input = gr.Textbox(lines=2, placeholder="Enter your prompt here...", label="Prompt")
model_dropdown = gr.Dropdown(choices=[
    "jadechoghari/Ferret-UI-Gemma2b",
    "jadechoghari/Ferret-UI-Llama8b",
], label="Model Path", value="jadechoghari/Ferret-UI-Gemma2b")

bounding_box_input = gr.Textbox(placeholder="Optional bounding box (x1, y1, x2, y2)", label="Bounding Box (optional)")
chatbot = gr.Chatbot(label="Chat with Ferret-UI", height=400, show_copy_button=True, latex_delimiters=latex_delimiters_set)

with gr.Blocks(title=model_name, theme=gr.themes.Ocean()) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            # gr.Examples(
            #     examples=[
            #         ["appstore_reminders.png", "Describe the image in details", "jadechoghari/Ferret-UI-Gemma2b", None],
            #         ["appstore_reminders.png", "What's inside the selected region?", "jadechoghari/Ferret-UI-Gemma2b", "189, 906, 404, 970"],
            #         ["appstore_reminders.png", "Where is the Game Tab?", "jadechoghari/Ferret-UI-Gemma2b", None],
            #     ],
            #     inputs=[image_input, text_input, model_dropdown, bounding_box_input]
            # )
            image_input.render()
            text_input.render()
            model_dropdown.render()
            bounding_box_input.render()
        with gr.Column(scale=7):
            chatbot.render()
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Clear", variant="secondary")

    send_click_event = send_btn.click(
        inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input], chatbot
    ).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
    submit_event = text_input.submit(
        inference_with_gradio, [chatbot, image_input, text_input, model_dropdown, bounding_box_input], chatbot
    ).then(submit_chat, [chatbot, text_input], [chatbot, text_input])
    
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input, bounding_box_input])

demo.launch()