#!/usr/bin/env bash # inference utk python3 eval_pretrained.py \ --dataset_images data/utk/images \ --dataset_annotations data/utk/annotation \ --dataset_name utk \ --batch-size 512 \ --checkpoint pretrained/model_imdb_cross_person_4.24_99.46.pth.tar \ --split valid \ --half \ --with-persons \ --device "cuda:0" # inference fairface python3 eval_pretrained.py \ --dataset_images data/FairFace/fairface-img-margin125-trainval \ --dataset_annotations data/FairFace/annotations \ --dataset_name fairface \ --batch-size 512 \ --checkpoint pretrained/model_imdb_cross_person_4.24_99.46.pth.tar \ --split val \ --half \ --with-persons \ --device "cuda:0" # inference adience python3 eval_pretrained.py \ --dataset_images data/adience/faces \ --dataset_annotations data/adience/annotations \ --dataset_name adience \ --batch-size 512 \ --checkpoint pretrained/model_imdb_cross_person_4.24_99.46.pth.tar \ --split adience \ --half \ --with-persons \ --device "cuda:0" # inference agedb python3 eval_pretrained.py \ --dataset_images data/agedb/AgeDB \ --dataset_annotations data/agedb/annotation \ --dataset_name agedb \ --batch-size 512 \ --checkpoint pretrained/model_imdb_cross_person_4.24_99.46.pth.tar \ --split 0,1,2,3,4,5,6,7,8,9 \ --half \ --device "cuda:0"